The Application Notebook
Polycyclic aromatic hydrocarbons (PAHs) are found worldwide and are emitted from a number of sources including fossil fuel, coal and shale oil derivatives, coke production, and burning wood for home heating, and generally arise from incomplete combustion. Surface water supplies, such as water in ponds, may be used for recreational purposes or become a drinking water source. Characterization of PAHs and their concentration is of interest in maintaining public health.
Alicia Cannon and Michael Ebitson, Horizon Technology, Inc.
Polycyclic aromatic hydrocarbons (PAHs) are found worldwide and are emitted from a number of sources including fossil fuel, coal and shale oil derivatives, coke production, and burning wood for home heating, and generally arise from incomplete combustion. Surface water supplies, such as water in ponds, may be used for recreational purposes or become a drinking water source. Characterization of PAHs and their concentration is of interest in maintaining public health.
PAH measurement in water should be accurate, precise, and sensitive enough to measure low concentrations. Method EN 16691 is a recently developed method that uses solid-phase extraction to isolate organic compounds from 1 L of water using a divinylbenzene (DVB) solid-phase extraction disk. PAHs are eluted from the disk with dichloromethane and dried to remove water before evaporation, solvent exchange into toluene, and introduction into GC–MS. The method specifies the use of the whole water sample, ensuring that any analyte adsorbed on the particulate matter will be extracted along with the water sample. Disks are a particularly well suited SPE format for samples containing particulates because the increased surface area does not become clogged with particulate as easily as a cartridge format might, even for larger water samples, such as 1 L. In addition, the particulates are rinsed with solvent at the same time as the bottle is rinsed in an automated system (SPE-DEX® 4790 or new SPE-DEX 5000), including compounds adsorbed on the particulate surfaces in the extraction process (1).
The recoveries of a suite of PAH compounds spiked into a pond water sample using this methodology are shown in Table 1 (2). A slow flow rate through the disk (25 mL/min) is specified in the method and excellent recoveries are shown in the full application note. However, the flow rate through a disk does not need to be limited in the same way as a cartridge for good equilibrium. The recoveries shown in Table 1 result from extraction at full speed (approximately 100 mL/min). Recoveries of the surrogate compounds are very good ensuring the method is operating properly. The recoveries of spiked compounds from the matrix is excellent.
The performance of the SPE-DEX 4790, using Atlantic® DVB disks for the extraction of PAHs, was shown to comply with method requirements and provided excellent recoveries of the full suite of PAH analytes.
References
Horizon Technology, Inc.
16 Northwestern Drive, Salem, New Hampshire 03079 USA
Tel.: +1 603 893 3663 Fax: +1 603 893 4994
E-mail:spe@horizontechinc.comWebsite:www.horizontechinc.com
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.