The characterization of paint in famous artworks is valuable for investigating the painting techniques used by artists, for conservation purposes and to help repair damaged paintings. By combining HPLC–ESI-QTOF-MS with traditional analytical techniques, researchers were able to clarify the composition of the oil components and hypothesize the botanical origin of the lipid materials used by Edvard Munch.
Photo Credit: Alessandro Di Noia/Getty Images
Researchers from the University of Pisa, Italy, have devised a new method to characterize complex oil mixtures in paintings using high performance liquid chromatography–electrospray ionization-quadrupole-time of flight mass spectrometry (HPLC-ESI-QTOF-MS).
1
The characterization of paint in famous artworks is valuable for investigating the painting techniques used by artists and for conservation purposes. Knowledge of the chemical composition of the paint is also useful to help repair damaged paintings. At the beginning of the 20th century a shift occurred in the chemical composition of oil paints. Painters of the 19th century symbolism movement and the early 20th century expressionism movement began to use different mixtures from those used in classical paintings. They blended traditional drying oils, such as linseed or walnut, with less expensive oils, such as castor or safflower. New classes of additives also emerged, including surfactants, metal soaps, and dispersing agents.
2,3
This shift in the composition of paint resulted in complex and difficult- to-characterize mixtures, representing a challenge for analytical chemists and researchers within conservation science. Lipid degradation complicated the situation further, especially in older works, and this exacerbated the challenges facing analytical chemists. Lipid characterization of modern paints was primarily performed using infrared spectrometry (FTIR), combined with analytical pyrolysis coupled with gas chromatography–mass spectrometry (Py-GC–MS), and GC–MS following a wet sample treatment. The latter technique was widely used to identify the botanical origin of the oils. However, there are inherent weaknesses in this approach, especially when differentiating oil mixtures because of a reliance on the palmitic to stearic acid ratio (P/S). In theory this ratio compares paint samples with reference samples, using a perceived resistance of saturated acyl chains to physical-chemical reactions during treatment and curing, compared to unsaturated ones. Unfortunately, this parameter is easily affected by environmental contamination as well as by the presence of other lipid sources, such as natural waxes, animal fat, or egg yolk. GC–MS has subsequently been regarded as an unreliable method to characterize oil mixtures.
4,5
To overcome the limitations associated with the P/S ratio researchers at the University of Pisa devised an approach combining HPLC–ESI-QTOF-MS with more traditional approaches. This novel technique determined triglyceride profiles in the lipid fractions of paint samples, and therefore the identification of oils used in the production of paint mixtures. To assess the validity of this novel and innovative analytical procedure nine samples from paint tubes, recovered from the atelier of Edvard Munch during his final working years in Ekley, were investigated. The same analytical approach was used to investigate a paint sample from Edvard Munch’s artwork, “New Rays”, part of Munch’s greatest decoration project, completed for the University of Oslo in 1916. By combining HPLC–ESI-QTOF-MS with traditional analytical techniques, researchers were able to clarify the composition of the oil components and hypothesize the botanical origin of the lipid materials used by Edvard Munch. Results obtained found the presence of both linseed and palm oil, and confirmed that paint supplies recovered from Munch’s atelier following his death were indeed used in the creation of the painting “New Rays”.
6
The use of HPLC–MS lipid profiling represents an important development in the field of cultural heritage and may yet prove to have wider implications. - L.B.
References
1. Jacopo La Nasa et al.,
Analytica Chimica Acta
896
, 177–189 (2015). 2. M. Lazzari and O. Chiantore,
Polym. Degrad. Stab
.
65
, 303–313 (1999). 3. E. Manzano, L.R.Rodriguez-Simónc, N. Navasa, R. Chea-Morenob, M. Romero-Gámeza, and L.F. Capitan-Vallvey,
Talanta
84
, 1148–1154 (2011). 4. A.K. Tsakalof, K.A. Bairachtari, and I.D. Chryssoulakis,
J. Sep. Sci.
29
, 1642–1646 (2006). 5. E. Gohde Sandbakken, and E. Storevik Tveit, in The Decorative: Conservation and the Applied Arts, 2012 IIC Congress Vienna (2012).
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.