The Application Notebook
Integration of RI peak areas enabled calculation of the AMY:AMP ratios, in excellent agreement with the nominal values. The values for Mw and Rz fall within the generally accepted limits found in the literature. Conformational plots for the AMP component verify its branched nature.
Starch is used for a variety of industrial and nutritional purposes. Its functional properties are influenced by the ratio and molar masses of its macromolecular constituents, which vary with source, crop year, and climate. Starch contains large homopolymers of amylose (AMY) and amylopectin (AMP).
Linear AMY consists of long chains of (1â¨4)-α-D-glucose linkages, while the higher molar mass AMP is a branched structure containing a mixture of (1â¨4)-α- and (1â¨6)-α-D-glucose linked residues. The goal of this work was to apply AF4-MALS-RI to separate AMY and AMP in order to calculate a mass ratio, to determine the molar mass distributions, the average molecular weights (Mw), and the mean-square radius (Rz) of the AMP component. We applied the technique to starches with AMY:AMP ratios covering a wide range.
Figure 1: AF4-MALS-RI results for five native starches of varying AMY:AMP ratio: AF4-RI fractograms with molar mass distributions overlaid. (Cross-flow (Vx) = 1.0 to 0.1 mL/min in 10 min, then Vx = 0.0 mL/min.)
An Eclipse AF4 system (Wyatt Technology) was equipped with a short (18 cm) channel, a 350 μm spacer, and a regenerated cellulose (10 kDa cutoff) membrane. Detection was accomplished with DAWN Multi Angle Light Scattering (MALS) and Optilab RI detectors (both instruments Wyatt Technology). The channel flow was maintained at 1.0 mL/min and the cross-flow was varied linearly from 1.0 to 0.1 mL/min for 10 min, then abruptly switched to 0.0 mL/min.
Integration of RI peak areas enabled calculation of the AMY:AMP ratios, in excellent agreement with the nominal values. The values for Mw and Rz fall within the generally accepted limits found in the literature. Conformational plots for the AMP component verify its branched nature.
Figure 2: Conformation plot (log Rz versus log Mw) for the amylopectin component of five starches (slopes 0.39-0.41 indicative of branching).
This note graciously submitted by Rick White and Eija Chiaramonte, Global Analytical Sciences-Personal Health, The Procter & Gamble Company, Mason, OH.
DAWN®, miniDAWN®, ASTRA®, Optilab® and the Wyatt Technology logo are registered trademarks of Wyatt Technology Corporation. ©2013 Wyatt Technology Corporation 4/4/13.
Wyatt Technology
6300 Hollister Avenue, Santa Barbara, CA 93117
tel. +1 (805) 681-9009, fax +1 (805) 681-0123
Website: www.wyatt.com
Analyzing Bone Proteins in Forensic Laboratories Using LC−MS/MS
November 4th 2024A recent study compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC–MS/MS), including an in-StageTip protocol previously optimized for forensic applications, and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions. LCGC International discussed this work with Noemi Procopio of the School of Law and Policing and the Research Centre for Field Archaeology and Forensic Taphonomy at the University of Central Lancashire (UK), corresponding author of the paper that resulted from this study.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Profiling Volatile Organic Compounds in Whisky with GC×GC–MS
November 1st 2024Researchers from Austria, Greece, and Italy conducted a study to analyze volatile organic compounds (VOCs) present in Irish and Scotch whiskys using solid-phase microextraction (SPME) Arrow with comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC–MS) to examine the organoleptic characteristics that influence the taste of spirits.