Special Issues
An introduction from the guest editors of this special supplement from LCGC Europe focusing on recent trends in pharmaceutical analysis.
An introduction from the guest editors of this special supplement from LCGC Europe focusing on recent trends in pharmaceutical analysis.
The pharmaceutical industry is one of the most regulated industries worldwide because the drugs produced have to be safe and effective. To comply with the regulations and guidance of drug production and control, a wide range of analytical techniques have to be used. In this supplement from LCGC Europe, leading industrialists share their expertise in some of the most commonly used and promising separation-based techniques. Among them, gas chromatography (GC), two-dimensional liquid chromatography (2D-LC), supercritical fluid chromatography (SFC), and the hyphenation of chromatography with mass spectrometry (MS) can be cited. In addition, an interesting paper dealing with the use of LC–UV and LC–MS based process analytical technology (PAT) in the pharmaceutical industry is also featured.
The first article by Wenya Zhu and colleagues (from Novartis, China and Switzerland) describes a new way of using regular GC methods used for decades to determine residual solvents in pharmaceutical substances. In this work, the authors propose a LEAN approach where multiple solvents can be simultaneously determined based on predetermined relative response factors (RRF) against an internal standard with only one injection of sample solution. This allows laboratory efficiency and instrument utilization to be significantly improved (by about 60% compared to the conventional external standard-based methods).
Mass spectrometry has gained impetus in recent years and considering its potential, there is no doubt that it will be more and more widely implemented in more pharmaceutical laboratories in the coming years. Tony Bristow and Andrew Ray (AstraZeneca, UK) discuss the recent advances in MS hyphenated to chromatography and its application in pharmaceutical analysis. This includes the use of compact, easy-to-use mass spectrometers for simple applications based on well-established chromatography workflows; developments in SFC–MS; the increasing use of high resolution MS in combination with LC and GC; ion mobility-based techniques as orthogonal separation techniques; and the increasing need for MS for more demanding applications such as novel (larger) molecules and complex drug delivery systems.
Liquid chromatography is by far the most widely used separation method in the pharmaceutical R&D and quality assurance (QA) and QC laboratories. 2D-LC is a powerful approach offering novel solutions to problems ranging from complex samples requiring excessively large peak capacity to simple, yet difficult to resolve compounds. In his contribution, C.J. Venkatramani (Genentech, USA) illustrates the potential of 2D-LC in the modern-day pharmaceutical industry to address real problems covering a wide range of applications from coelution, to peak purity assessment, to simultaneous achiral-chiral analysis, to genotoxic impurities, and more.
Doug Richardson (Merck, USA) and Todd Maloney (Eli Lilly, USA) highlight the practical applications of online chromatography (also known as PAT) in pharmaceutical and biopharmaceutical process development and manufacturing. The increasing importance of PAT (using chromatographic approaches and hyphenated techniques) in pharmaceutical industry is emphasized and the current status and recent developments are illustrated through various industrial applications, including control in regulated continuous manufacturing.
Despite the fact that SFC was first introduced in 1962 by Klesper, it is still considered as a niche technique, mostly used for chiral separations and preparative scale applications in the pharmaceutical industry. However, the technique has recently seen a real metamorphosis and renewed interest for analytical achiral applications in the pharmaceutical analysis community. The contribution prepared by Claudio Brunelli (Pfizer, UK) describes the key achievements and strengths of modern SFC in the pharmaceutical industry. A particular focus is dedicated to the implementation of SFC in regulated quality control (QC) laboratories, including the state of the modern instrumentation.
As guest editors of this special issue, we would like to warmly acknowledge all authors for their excellent job, and we hope that these contributions will be of interest to the LCGC Europe readers.
Adrian Clarke Novartis Technical R&D, Basel, Switzerland
Davy Guillarme University of Geneva, University of Lausanne, Geneva, Switzerland
GC–TOF-MS Finds 250 Volatile Compounds in E-Cigarette Liquids
November 1st 2024A study has used gas chromatography coupled to a time-of-flight mass spectrometer to build an electron ionization mass spectra database of more than 250 chemicals classified as either volatile or semi-volatile compounds. An additional, confirmatory layer of liquid chromatography–mass spectrometry analysis was subsequently performed.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Multivariate Design of Experiments for Gas Chromatographic Analysis
November 1st 2024Recent advances in green chemistry have made multivariate experimental design popular in sample preparation development. This approach helps reduce the number of measurements and data for evaluation and can be useful for method development in gas chromatography.