A new methodology for the characterization of synthetic oligonucleotides has been developed by researchers from the University of Tübingen, Germany.
Photo Credit: stock.adobe.com.nobeastsofierce
A new methodology for the characterization of synthetic oligonucleotides has been developed by researchers from the University of Tübingen, Germany (1).
Synthetic oligonucleotides are a class of synthetic nucleic acids, which are generally 12–30 nucleotides in length. They have gained considerable popularity as a therapeutic tool and are a promising product for the regulation of gene expression. As they are to be used in humans and in clinical trials, their production must lead to high purity products. However, a number of issues can arise during their synthesis, such as deleted or extended base sequences or base modifications, and therefore the purification methods and assays for their quality control must be robust and thorough.
The dominant method currently uses ion-pair reversed-phase chromatography with triethylammonium acetate as an ion-pairing agent because oligonucleotides are poorly retained by common reverse-phase liquid chromatography (LC). However, as this method is hyphenated to mass spectrometry some drawbacks occur, such as ion-suppression in electrospray ionization. As such a methodology with sufficient selectivity and better compatibility for MS detection is desirable.
Towards this end, researchers developed a multiple heart-cutting (MHC) two-dimensional liquid chromatography (2D-LC) method with ultra-violet (UV) and electrospray ionization (ESI) mass spectrometry (MS) detection. The first dimension features a reversed-phase/weak anion-exchange (RP/WAX) stationary phase which provides the selectivity required to separate structurally similar oligonucleotide sequences. The second dimension reversed-phase column desalts via a diverter valve, and the active solvent modulation enables the oligonucleotide peak to be viewed without interference from non-volatile buffer components and ion-pair agents, which allows oligonucleotides to be detected in MS-compatible conditions.
Α α, Β β, Γ γ, Δ δ, Ε ε, Ζ ζ, Η η, Θ θ, Ι ι, Κ κ, Λ λ, Μ μ, Ν ν, Ξ ξ, Ο ο, Π π, Ρ ρ, Σ σ/ς, Τ τ, Υ υ, Φ φ, Χ χ, Ψ ψ, Ω ω
Reference
F. Li et al., J. Chroma. A. 1625, 461338 (2020).
Evaluating Natural Preservatives for Meat Products with Gas and Liquid Chromatography
April 1st 2025A study in Food Science & Nutrition evaluated the antioxidant and preservative effects of Epilobium angustifolium extract on beef burgers, finding that the extract influenced physicochemical properties, color stability, and lipid oxidation, with higher concentrations showing a prooxidant effect.
Rethinking Chromatography Workflows with AI and Machine Learning
April 1st 2025Interest in applying artificial intelligence (AI) and machine learning (ML) to chromatography is greater than ever. In this article, we discuss data-related barriers to accomplishing this goal and how rethinking chromatography data systems can overcome them.
The Benefits of Custom Bonded Silica
April 1st 2025Not all chromatography resins are created equal. Off-the-shelf chromatography resins might not always meet the rigorous purification requirements of biopharmaceutical manufacturing. Custom bonded silica from Grace can address a wide range of separation challenges, leading to real performance improvements. Discover more about the latest innovations in chromatography silica from Grace, including VYDAC® and DAVISIL®.