November 20th 2024
In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
Multi-Residue Pesticide Screening Method Using GC–MS
December 2nd 2007Pesticides are widely used by farmers to control pests, weeds and molds that would otherwise decrease crop production. While this has significantly increased worldwide food productions, these same pesticides pose health risks to humans. The restrictions for specific pesticides differ from one country to the next and as world trade increases, the potential threat to other countries' populations increases. For this reason, pesticides and other food related allergens are currently the subjects of increasing scrutiny and regulation.
The Saga of the Electron-Capture Detector
September 1st 2007In addition to the universal detectors used in gas chromatography (GC), selective detectors have also played an important role in the rapid spreading of the utilization of the technique. Probably the most important selective GC detector is the electron-capture detector, with a very high sensitivity to organic compounds containing chlorine and fluorine atoms in their molecules. The electron-capture detector had a vital role in environmental protection and control - its use helped to prove the ubiquitous presence of chlorinated pesticides in nature and halocarbons in our atmosphere, and made us aware of the global extent of pollution. It was the electron-capture detector that made concentration ranges of parts-per-billion (ppb: 1:109) or even parts-per-trillion (ppt: 1:1012) detectable. Today, these terms are used routinely without realising how formidable such a sensitivity really is: 1 ppb means that a spaceship (or a UFO, depending upon one's inclination) could pick up a particular family of six from..
Analysis of PFOA and PFOS in Water Using Reversed-Phase HPLC with Suppressed Conductivity Detection
June 1st 2007Suppressed conductivity detection is a well-developed method for detecting charged species. Reversed-phase high-performance liquid chromatography (RP-HPLC) is a well developed method of separating substances on the basis of hydrophobicity. There are some situations where it is advantageous to use these two methods together. Perfluoro-acids (PFOAs) are one class of compounds that are ionic, hydrophobic and have low UV absorbance and are, therefore, suited to this combination.
Thermal Desorption-GC–MS Analysis of Polycyclic Aromatic Hydrocarbons on Fine Particulates in Air
June 1st 2007Polycyclic aromatic hydrocarbons (PAHs) are commonly found throughout the environment in soil, water and adsorbed to fine particulate matter in air. Of the 16 common PAHs, 7 have been classified as animal carcinogens by the International Agency for Research on Cancer (IARC). Resulting from this classification, PAHs are monitored and regulated in the environment.
Modern Techniques for the Extraction of Solid Materials — An Update
February 1st 2007Traditional methods for the sample preparation of insoluble solid materials have represented one of the more time consuming and labour-intensive efforts in analysis. In this instalment of "Sample Prep Perspectives", Ron Majors examines modern sample preparation methods for solids that often involve increased temperature and higher pressure to speed up the extraction process. In addition, modern sample preparation methods have been automated to relieve analysts of the drudgery associated with traditional methods. Here, he reports on automated Soxhlet extraction, supercritical fluid extraction, pressurized fluid extraction–accelerated solvent extraction, and microwave-assisted extraction and updates earlier coverage.
LC–MS Analysis of Glyphosate and AMPA using Hypercarb Columns
December 2nd 2006Glyphosate [N-(phosphonomethyl) glycine] is a broad spectrum, non-selective herbicide, which acts by inhibiting the shikimic acid pathway in plants. Recent studies have raised global health and environmental concerns about glyphosate's use.1 Glyphosate readily breaks down into aminomethyl phosphonic acid (AMPA) in the environment; requiring accurate measurement. Both highly polar compounds present an analytical challenge to the chromatographer (Figure 1). Typical silica based reversed-phase C18 columns experience difficulty with the retention of such polar compounds, and may generate non-resolved co-eluting peaks, often with polar analytes eluting in the void volume. Traditional analytical methods require complex eluents and time consuming derivatization steps to achieve retention on a reversed-phase support.
Analysis of Polybrominated Diphenyl Ethers Using the Clarus 500 GC–MS
July 2nd 2006This application note will demonstrate a GC–MS analysis of common polybrominated diphenyl ether (PBDE) congeners. An optimized method will allow the Clarus GC–MS to provide ample separation and high yields of all PBDE congeners. The extended mass range of the Clarus 500 MS and high-mass calibration will produce mass spectra with very high levels of accuracy.
Accurate Mass Compound Identification with Single-Quadrupole Gas Chromatography-Mass Spectrometry
June 30th 2006Gas chromatography-mass spectrometry using a single-quadrupole instrument is the workhorse technique of the environmental lab. It normally falls short for applications that require high mass accuracy. It is shown here that with proper calibration techniques, this technique can indeed readily obtain high mass accuracies to within a few millidaltons and become a powerful tool for unknown compound identification.
Analysis of Volatile Bacterial Metabolites by Gas Chromatography–Mass Spectrometry
A method for the identification of key volatile organic compound (VOC) markers associated with infection by Neisseria meningitidis bacteria by gas chromatography–mass spectrometry (GC–MS) was developed. Headspace samples of bacterial VOCs were trapped on triple-sorbent bed tubes and then thermally desorbed into a laboratory GC–MS system for separation. Identification was carried out by comparison of GC retention time and electron ionization mass spectra to the National Institute of Standards and Technology (NIST) database. Further confirmation was obtained by GC–MS of known standard chemicals. A total of 75 VOCs were detected, five of which can be considered key VOC markers for Neisseria meningitidis. These peaks were identified as 1,2-dimethylcyclopropane, 2-methylpropanal, methacrolein, N-2-dimethyl-1-propanamine, and 3-methylbutanal by the NIST database.
Enhanced Sample Throughput for Environmental Analysis
June 1st 2005As environmental legislation becomes more stringent, the need to deliver quantitative results in shorter times and greater volumes is necessary for routine environmental analysis. Most of the high-throughput screening methods used to analyze pharmaceutical compounds are, however, useless for environmental monitoring. This is because these methods primarily aim to retrieve as much information from a single sample using the broadest range of techniques. The chromatographic separation process is considered to be the bottleneck in the process. This is not the situation for environmental procedures, in which the bottleneck is the sample preparation step and is usually very tedious and time-consuming.
Enhanced Sample Throughput for Environmental Analysis
February 1st 2005In this article, the authors look at ways to increase sample throughput for routine environmental analysis. Several strategies aimed at enhancing laboratory productivity are highlighted and illustrated with from-the-floor applications.
Determination of Common Inorganic Anions in Environmental Waters Using a Hydroxide Selective Column
February 1st 2004The authors evaluted the performance of a high-capacity anion-exchange column specifically designed for use with hydroxide eluents for fulfilling the requirements of EPA Method 300.0 Part A and compared the results with data generated with an anion-exchange column using carbonate eluents.