Challenges in Small-Molecule Quantitation by Mass Spectrometry
November 1st 2007Drug discovery scientists are continually striving to improve productivity and efficiency in their workflows. From early discovery to clinical development, existing workflow bottlenecks represent an opportunity to develop solutions to speed the process and improve productivity. The key requirements for quantitative analysis are precision, accuracy, and linear dynamic range. With any quantitative instrument, the hope is that it will be applicable to a vast range of coumpounds, ruggest, and fast. New mass spectrometry (MS) technologies are being developed that meet these criteria and permit high throughput while enabling its application to areas in which speed limitations previously curtailed its practicality. In particular, in the area of ADME profiling, new MS platforms are becoming available that increase the throughput by at least 25-fold, by combining the speed of matrix-assisted laser desorption ionization (MALDI) with the specificity of triple-quadrupole MS. This is bound to greatly accelerate the ADME..
Extraction and Detection of Antibiotics in the Rhizosphere Metabolome
November 1st 2007Root diseases caused by soilborne plant pathogens are responsible for billions of dollars of losses annually in food, fiber, ornamental, and biofuel crops. The use of pesticides often is not an option to control plant diseases because of economic factors or potential adverse effects on the environment or human health. For this reason, many Americans are now buying pesticide-free organic foods. Organic agriculture has few options for controlling pests and thus must make full use of natural microbial biological control agents in soils that suppress diseases.
Mass Analysis from Kilodaltons to Megadaltons Using Macroion Mobility Spectrometry
November 1st 2007Mass spectrometry (MS) has advanced to analyze ever-larger biomolecules with the invention of soft ionization techniques like electrospray ionization (ESI). Although ESI has provided a method of generating ions of high mass, mass spectrometers generally suffer both lower sensitivity and lower resolution as the mass-to-charge ratio of an ion increases. To extend the mass range of ionized macromolecules beyond the limits of MS, macroion mobility spectrometry utilizes ion mobility sizing to characterize charge-reduced ESI-generated macroions from >5 kDa to beyond megadalton masses. One prominent application of macroion mobility spectrometry, highlighted here, is the high sensitivity analysis of intact proteins, antibodies, and conjugates in which molecular masses range from antibody light-chain fragments to high mass immunoglobulin multimers.