A new study presents a proteomics approach to investigate changes at the molecular scale that could control whether or not embyro implantation using IVF is successful.
There are many couples worldwide that are affected by infertility and require medical intervention to achieve a successful pregnancy. In vitro fertilization–embryo fertilization (IVF–ET) is one procedure that can be undergone; however, it can be limited by the low rate of embryo implantation. A new study published in the Journal of Proteome Research presents a proteomics approach to investigate changes at the molecular scale that could control whether or not implantation using IVF is successful.1
The authors state that around two-thirds of implantation failures in IVF are attributed to the receptivity of the membrane lining the uterus, the endometrium, which is a complex tissue that undergoes changes in response to hormone levels in the body. To detect the changes governing receptivity, the authors took a proteomics approach to screen for changes in proteins expressed in the tissue when receptive versus proliferative phase (non-receptive).
Clinical biopsy tissue samples were taken from 12 women undergoing IVF treatment and analyzed using high performance liquid chromatography coupled to tandem mass spectrometry (HPLC–MS–MS). More than 2000 proteins were identified and quantified - 300 proteins were found to vary between the receptive and proliferative phase. According to the authors, the method developed could be performed in future studies looking at variations in protein expression in other endometrium-related diseases.
Reference
1. Q. Chen et al., Journal of Proteome Research14, 1831–1842 (2015).
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.