Researchers from the University of Colorado have characterized flow?back water generated from fracking activities, using a combination of analytical techniques, to determine how best to treat wastewater so that it can be recycled.
Photo Credit: irmetovGetty-Images
Hydraulic fracturing - also referred to as “fracking” - is a technique used for the extraction of natural gas that has been widely adopted to exploit natural gas resources in the USA. However, there are growing concerns about the potential impact of fracking activity on the environment and human health, one of which is the question of how to dispose of or recycle the large volume of wastewater generated. Researchers from the University of Colorado have published a study in the journal Science of the Total Environment to characterize flow-back water generated from fracking activities, using a combination of analytical techniques.1
Fracking describes the process of producing fractures in rock formations by pumping large quantities of hydraulic fracturing fluid at high pressure down a drilled wellbore.2 Hydraulic fracturing fluid contains a mixture of water and chemical additives that expand fractures and, once the fracturing process is complete, is returned to the surface. If not disposed of safely or treated effectively, the wastewater can contaminate water sources in the surrounding area.
Corresponding author Karl. G. Linden from the University of Colorado told The Column: “This study is part of a larger effort by our group funded by the National Science Foundation to evaluate sustainable options for water reuse in the oil and gas industry. The first step is to know what is in the flowback and produced waters from hydraulic fracturing, [so] then we can design effective treatment processes to meet goals of reusing the water - either for more fracturing to save other freshwater sources or for safe reuse or distribution into the environment.”
Flowback water was sampled from a well in the Denver-Julesberg basin and assessed for general quality. Volatile fatty acids and inorganic anions were measured using ion chromatography (IC), and gas chromatography coupled to mass spectrometry (GC–MS) was performed to determine volatile and semi-volatile organic compounds. Linden said: “The specific chemicals and stabilizers that are used in fracturing fluids, mixed with the deep-bed saline formation waters, under pressure and temperature, may form compounds we do not expect to see. To be able to detect unknowns, we need to apply advanced analytical methods such as time-of-flight liquid chromatography–mass spectrometry, with accurate mass analysis.”
According to the paper, the flowback from the Denver-Julesberg basin contained salts, metals, and high levels of organic matter composed of fracturing fluid additives and degradation products. This led the authors to conclude that using biological processing would be the best approach to treating flowback water in this location.
When asked about future work, Linden told The Column: “We are currently studying the evolution of water quality that flows back from the start of a hydraulic fracturing job to the time that the well is fully producing oil and gas. This study will be a first-of-its-kind time course study to evaluate how water quality evolves during a hydraulic fracturing job and will help inform the treatment strategies that will allow for effective reuse of this water from day 1. Ideally we want to keep the water safely in the hydraulic cycle and not have to rely on deep well injection for disposal, which has its environmental costs.” - B.D.
References
1. Y. Lester, I. Ferrer, E.M. Thurman, K.A. Sitterley, J.A. Korak, G. Aiken, and K.G. Linden, Science of the Total Environment DOI:10.1016/j.scitotenv.2015.01.043 (2015).
2. United States Environmental Protection Agency [Last accessed 13 April 2015: http://www2.epa.gov/hydraulicfracturing/process-hydraulic-fracturing]
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.