Researchers have developed a rapid and sensitive technique for the speciation analysis of complexes of nickel, lead, cobalt, iron, and calcium, as well as two aminopolycarboxylate chelator variants, EDTA and EDDS.
The natural speciation of metals in environmental matrices can be easily disrupted by chelators which form soluble complexes with metals. Unfortunately, the detection of such complexes during their formation in environmental matrices has remained challenging, largely because of the difficulty in obtaining the precise inherent nature of metal-chelator complexes using routine techniques. As such researchers have developed a rapid and sensitive technique for the speciation analysis of complexes of nickel, lead, cobalt, iron, and calcium, as well as two aminopolycarboxylate chelator variants, EDTA (ethylenediaminetetraacetic acid) and EDDS (ethylenediamine-N,N’-disuccinic acid). Sample preparation consisted of a simple dilution, the speciation analysis was performed using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF–MS), and separation was achieved using hydrophilic interaction liquid chromatography (HILIC) (1). The effect of various operating parameters on analytes such as mobile‑phase composition, buffer concentrations and pH, sample diluents, sample injection volume, and column temperature on the peak shape and sensitivity were systematically optimized. These steps resulted in a rapid and dependable method of speciation analysis and simultaneous detection of metal-chelator complexes from environmental samples.
References
Investigating the Protective Effects of Frankincense Oil on Wound Healing with GC–MS
April 2nd 2025Frankincense essential oil is known for its anti-inflammatory, antioxidant, and therapeutic properties. A recent study investigated the protective effects of the oil in an excision wound model in rats, focusing on oxidative stress reduction, inflammatory cytokine modulation, and caspase-3 regulation; chemical composition of the oil was analyzed using gas chromatography–mass spectrometry (GC–MS).
Evaluating Natural Preservatives for Meat Products with Gas and Liquid Chromatography
April 1st 2025A study in Food Science & Nutrition evaluated the antioxidant and preservative effects of Epilobium angustifolium extract on beef burgers, finding that the extract influenced physicochemical properties, color stability, and lipid oxidation, with higher concentrations showing a prooxidant effect.
Rethinking Chromatography Workflows with AI and Machine Learning
April 1st 2025Interest in applying artificial intelligence (AI) and machine learning (ML) to chromatography is greater than ever. In this article, we discuss data-related barriers to accomplishing this goal and how rethinking chromatography data systems can overcome them.