Researchers have developed a rapid and sensitive technique for the speciation analysis of complexes of nickel, lead, cobalt, iron, and calcium, as well as two aminopolycarboxylate chelator variants, EDTA and EDDS.
The natural speciation of metals in environmental matrices can be easily disrupted by chelators which form soluble complexes with metals. Unfortunately, the detection of such complexes during their formation in environmental matrices has remained challenging, largely because of the difficulty in obtaining the precise inherent nature of metal-chelator complexes using routine techniques. As such researchers have developed a rapid and sensitive technique for the speciation analysis of complexes of nickel, lead, cobalt, iron, and calcium, as well as two aminopolycarboxylate chelator variants, EDTA (ethylenediaminetetraacetic acid) and EDDS (ethylenediamine-N,N’-disuccinic acid). Sample preparation consisted of a simple dilution, the speciation analysis was performed using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF–MS), and separation was achieved using hydrophilic interaction liquid chromatography (HILIC) (1). The effect of various operating parameters on analytes such as mobile‑phase composition, buffer concentrations and pH, sample diluents, sample injection volume, and column temperature on the peak shape and sensitivity were systematically optimized. These steps resulted in a rapid and dependable method of speciation analysis and simultaneous detection of metal-chelator complexes from environmental samples.
References
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.