Researchers have developed a rapid and sensitive technique for the speciation analysis of complexes of nickel, lead, cobalt, iron, and calcium, as well as two aminopolycarboxylate chelator variants, EDTA and EDDS.
The natural speciation of metals in environmental matrices can be easily disrupted by chelators which form soluble complexes with metals. Unfortunately, the detection of such complexes during their formation in environmental matrices has remained challenging, largely because of the difficulty in obtaining the precise inherent nature of metal-chelator complexes using routine techniques. As such researchers have developed a rapid and sensitive technique for the speciation analysis of complexes of nickel, lead, cobalt, iron, and calcium, as well as two aminopolycarboxylate chelator variants, EDTA (ethylenediaminetetraacetic acid) and EDDS (ethylenediamine-N,N’-disuccinic acid). Sample preparation consisted of a simple dilution, the speciation analysis was performed using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF–MS), and separation was achieved using hydrophilic interaction liquid chromatography (HILIC) (1). The effect of various operating parameters on analytes such as mobile‑phase composition, buffer concentrations and pH, sample diluents, sample injection volume, and column temperature on the peak shape and sensitivity were systematically optimized. These steps resulted in a rapid and dependable method of speciation analysis and simultaneous detection of metal-chelator complexes from environmental samples.
References
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.