An analysis method for influenza virus particles has been developed using SEC which provides complimentary biopharmaceutical data for use during vaccine production and approval.
Photo Credit: dottedyeti/stock.adoboe.com
An analysis method for influenza virus particles has been developed using size-exclusion chromatography (SEC) which provides complimentary biopharmaceutical data for use during vaccine production and approval (1).
Vaccination is the most effective form of influenza control, preventing widescale outbreaks and pandemics from emerging. Various manufacturers produce influenza vaccines utilizing inactivated whole virus particles to illicit an immune response in the recipient via the surface antigens present on the viruses. Primarily these are Hemagglutinin (HA) and neuraminidase (N) with 17 different HA and 10 different neuraminidases being identified. As such, the amount of HA in any produced vaccine is crucial to the effectiveness and subsequent release of a vaccine for use with various guidelines existing to ensure enough HA antigen is present.
Currently, HA quantification mostly relies on two methods: the single radial immunodiffusion (SRID) assay and the HA assay. SRID is considered the gold standard and is based on antigen binding, whereas HA assays use the hemagglutination of erythrocytes. Despite its history, widespread acceptance, and various uses, the HA assay has a number of drawbacks such as the lack of standardization, its discrete format, deviations due to erythrocyte aging (2), secondary interactions of pH, buffer ions (3), and other compounds in complex virus samples. These drawbacks have become particularly relevant in recent years as authoritative bodies have sought an enhanced understanding and control of the vaccine production process with investigation of size, content, and immunogenicity of aggregates in the drug product or substance recommended. As such, numerous techniques and methods have been published offering solutions.
One such publication focused on analytical size-exclusion chromatography (SEC), a non-destructive technique that has been used for decades to analyze the aggregate and fragment content of therapeutic proteins (4). Researchers developed a robust method that handles different buffer systems, ionic strength, and additive concentrations well. Requiring the addition of 200-mM arginine or sodium chloride to obtain complete virus particle recovery. The results are confirmed by dynamic light scattering (DLS), and the universal applicability of the method was demonstrated with three different influenza virus samples, including the pandemic H1N1 vaccine strain 5258 which is an industrially-produced pandemic vaccine strain. The method adds valuable data regarding the size distribution of influenza virus samples to the commonly- used HA assay for the quantification of influenza viruses, and can potentially be used to adhere to ever stricter guidelines from biopharmaceutical regulatory bodies.
References
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.