LCGC North America
An explanation of why HPLC eluent systems are designed as they are.
In reversed-phase separations, the eluent tends to be more polar (more hydrophilic) than the stationary-phase surface and is typically a mixture of water and an organic solvent, usually methanol or acetonitrile. The choice of organic modifier will affect the selectivity of the separation because methanol and acetonitrile have different solvochromatic properties, the most important of which are dipole moment, acidity, and basicity. Acetonitrile has a higher dipole moment and is more predominantly acidic (hydrogen bond donor) whereas methanol has a lower dipole moment, is more predominantly basic (hydrogen bond acceptor), and has a slightly lower elution strength. Different binary and ternary mixtures of these solvents with water can produce a wide range of selectivity options during method development. Acetonitrile is often used because of its low UV cutoff, lower viscosity (methanol forms highly viscous mixtures with water at certain concentrations), and higher boiling point. Solvent mixtures may be isocratic (fixed ratio of organic to aqueous components), or the elutropic strength can be continuously increased during the experiment by increasing the amount of organic modifier in a gradient elution experiment.
For ionizable analytes, the extent of ionization will alter the polarity of the analyte molecule as well as its ability to interact with solvent and charged species within the bonded phase or stationary-phase surface. The eluent pH can be used to influence the degree of analyte ionization and as such its polarity, which alters analyte retention based on the proximity of eluent pH to the pKa (partial acid dissociation constant) of the analyte functional groups. If the analyte contains an acidic functional group with pKa equal to 4.0, retention at pH 2.0 will be significantly greater because the analyte will be almost wholly nonionized (less polar) and at pH 6.0 retention will be significantly lower because the functional group will be almost wholly ionized (more polar). The opposite would be true if the analyte were basic. In this case, the relative retention times of analytes (selectivity) can be altered by changing the eluent pH until a satisfactory separation can be obtained. Eluent pH values at or near to the analyte pKa will risk robustness issues as small changes in pH will result in relatively large changes in analyte retention.
Table I: Solvochromatic and physicochemical properties of common solvents used in reversed-phase HPLC
Modern approaches to working with ionizable analytes often involve working at pH extremes to avoid variations in selectivity because of changes in the mobile-phase pH. The pH is typically altered using trifluoroacetic acid, formic acid, ammonia, or ammonium hydroxide. This often improves method robustness, but requires selectivity to be optimized by other means such as stationary phase, organic modifier type, and eluotropic strength, which limits the extent to which separations can be optimized. For complex separations (acids, bases, or mixtures of both) more careful pH optimization may be required and the use of a buffered mobile phase will be required.
Table II: Properties of various common HPLC buffers
A particular buffer is only reliable within 1 pH unit on either side of its pKa and, therefore, the choice of buffer will be heavily influenced by the required eluent pH. The buffer concentration must be adequate, but not excessive. Below 10 mM, buffers have very little buffering capacity and will not be able to resist changes in pH. At concentrations greater than 50 mM there is a risk of the salt being precipitated in the presence of high organic concentrations (that is, >60% acetonitrile). Buffer concentrations will normally be in the range 25–100 mM, and the effect of the buffer concentration should be investigated as part of the method development process because both retention and selectivity of the separation can be affected by changes in the type and concentration of the buffer. Remember, if a UV-based detector is being used, take note of the UV cutoff of the buffer. If mass spectrometric detection is being used, then the use of a volatile buffer is essential.
In cases where strong acids or bases are being analyzed, or when analytes are amphoteric, it may be necessary to use an ion-pairing reagent, which is an acid or base with highly hydrophobic groups that will pair with the conjugate group on the analyte molecule to neutralize charge and add hydrophobic character, which can be used to improve retention of the neutral ion pair. When an ion pair is used, the eluent pH is adjusted to ensure complete ionization of the analyte.
SPME GC-MS–Based Metabolomics to Determine Metabolite Profiles of Coffee
November 14th 2024Using a solid phase microextraction gas chromatography-mass spectrometry (SPME GC-MS)-based metabolomics approach, a recent study by the School of Life Sciences and Technology at Institut Teknologi Bandung (Indonesia) investigated the impact of environmental factors (including temperature, rainfall, and altitude) on volatile metabolite profiles of Robusta green coffee beans from West Java.
RP-HPLC Analysis of Polyphenols and Antioxidants in Dark Chocolate
November 13th 2024A recent study set out to assess the significance of geographical and varietal factors in the content of alkaloids, phenolic compounds, and the antioxidant capacity of chocolate samples. Filtered extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) and spectrophotometric methods to determine individual phenolics and overall indexes of antioxidant and flavonoid content.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Katelynn Perrault Uptmor Receives the 2025 LCGC Emerging Leader in Chromatography Award
Published: November 13th 2024 | Updated: November 13th 2024November 13, 2024 – LCGC International magazine has named Katelynn A. Perrault Uptmor, Assistant Professor of Chemistry at the College of William & Mary, the recipient of the 2025 Emerging Leader in Chromatography Award. This accolade, which highlights exceptional achievements by early-career scientists, celebrates Perrault Uptmor’s pioneering work in chromatography, particularly in the fields of forensic science, odor analysis, and complex volatile organic compounds (VOCs) research.