LCGC North America
An explanation of why HPLC eluent systems are designed as they are.
In reversed-phase separations, the eluent tends to be more polar (more hydrophilic) than the stationary-phase surface and is typically a mixture of water and an organic solvent, usually methanol or acetonitrile. The choice of organic modifier will affect the selectivity of the separation because methanol and acetonitrile have different solvochromatic properties, the most important of which are dipole moment, acidity, and basicity. Acetonitrile has a higher dipole moment and is more predominantly acidic (hydrogen bond donor) whereas methanol has a lower dipole moment, is more predominantly basic (hydrogen bond acceptor), and has a slightly lower elution strength. Different binary and ternary mixtures of these solvents with water can produce a wide range of selectivity options during method development. Acetonitrile is often used because of its low UV cutoff, lower viscosity (methanol forms highly viscous mixtures with water at certain concentrations), and higher boiling point. Solvent mixtures may be isocratic (fixed ratio of organic to aqueous components), or the elutropic strength can be continuously increased during the experiment by increasing the amount of organic modifier in a gradient elution experiment.
For ionizable analytes, the extent of ionization will alter the polarity of the analyte molecule as well as its ability to interact with solvent and charged species within the bonded phase or stationary-phase surface. The eluent pH can be used to influence the degree of analyte ionization and as such its polarity, which alters analyte retention based on the proximity of eluent pH to the pKa (partial acid dissociation constant) of the analyte functional groups. If the analyte contains an acidic functional group with pKa equal to 4.0, retention at pH 2.0 will be significantly greater because the analyte will be almost wholly nonionized (less polar) and at pH 6.0 retention will be significantly lower because the functional group will be almost wholly ionized (more polar). The opposite would be true if the analyte were basic. In this case, the relative retention times of analytes (selectivity) can be altered by changing the eluent pH until a satisfactory separation can be obtained. Eluent pH values at or near to the analyte pKa will risk robustness issues as small changes in pH will result in relatively large changes in analyte retention.
Table I: Solvochromatic and physicochemical properties of common solvents used in reversed-phase HPLC
Modern approaches to working with ionizable analytes often involve working at pH extremes to avoid variations in selectivity because of changes in the mobile-phase pH. The pH is typically altered using trifluoroacetic acid, formic acid, ammonia, or ammonium hydroxide. This often improves method robustness, but requires selectivity to be optimized by other means such as stationary phase, organic modifier type, and eluotropic strength, which limits the extent to which separations can be optimized. For complex separations (acids, bases, or mixtures of both) more careful pH optimization may be required and the use of a buffered mobile phase will be required.
Table II: Properties of various common HPLC buffers
A particular buffer is only reliable within 1 pH unit on either side of its pKa and, therefore, the choice of buffer will be heavily influenced by the required eluent pH. The buffer concentration must be adequate, but not excessive. Below 10 mM, buffers have very little buffering capacity and will not be able to resist changes in pH. At concentrations greater than 50 mM there is a risk of the salt being precipitated in the presence of high organic concentrations (that is, >60% acetonitrile). Buffer concentrations will normally be in the range 25–100 mM, and the effect of the buffer concentration should be investigated as part of the method development process because both retention and selectivity of the separation can be affected by changes in the type and concentration of the buffer. Remember, if a UV-based detector is being used, take note of the UV cutoff of the buffer. If mass spectrometric detection is being used, then the use of a volatile buffer is essential.
In cases where strong acids or bases are being analyzed, or when analytes are amphoteric, it may be necessary to use an ion-pairing reagent, which is an acid or base with highly hydrophobic groups that will pair with the conjugate group on the analyte molecule to neutralize charge and add hydrophobic character, which can be used to improve retention of the neutral ion pair. When an ion pair is used, the eluent pH is adjusted to ensure complete ionization of the analyte.
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.