Scientists from the Monell Chemical Senses Center (Philadelphia, USA) have developed a nanotechnology sensor for the detection of melanoma.1
Scientists from the Monell Chemical Senses Center (Philadelphia, USA) have developed a nanotechnology sensor for the detection of melanoma.1 Melanoma arises when melanocytes, pigment-producing cells that give skin its colour, transform to become tumours. The disease is estimated to be responsible for 75% of skin cancer deaths, according to a press release from the center. Detection is largely dependent on self‑examination, and subsequent visual diagnosis by a clinician.
A need for a non-invasive method for the detection of melanoma led the group to consider the volatile organic compounds (VOCs) released by the skin. Based on previous studies, they hypothesized that the VOC profile of melanoma and melanocytes could differ.
Solid-phase micro-extraction (SPME) was performed followed by gas chromatography–mass spectrometry (GC–MS) to determine variations between the VOC profiles of melanocytes and melanoma. Levels of isoamyl alcohol were found to be higher in melanoma cells than melanocytes, and isolvaleric acid lower in melanoma cells. Melanoma cells produced dimethyldi- and trisulphide compounds, not detected from non-melanoma cells.
Recognizing the need for a portable method that could be transferred into a clinical setting, the scientists developed a single-stranded DNA-coated nanotube (DNACNT) sensor to examine VOCs from melanoma and normal cells. The sensor consisted of nano-sized carbon tubes coated with DNA that could be bioengineered to recognize different VOCs associated with other diseases.
The authors concluded that the monitoring of melanoma VOCs has potential in screening methods. A.T. Charlie Johnson (University of Pennsylvania), who led the development of the sensor, commented: “We are excited to see that the DNA-carbon nanotube vapour sensor concept has potential for use as a diagnostic. Our plan is to move forward with research into skin cancer and other diseases.”
Reference
1. Jae Kwak et al, Journal of Chromatography B931, 90–96 (2013).
This story originally appeared in The Column. Click here to view that issue.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.