Thirty percent of approved drugs will be based on recombinant monoclonal antibody (rMab) drugs over the next 10 years. Glycosylation, the convalent addition of carbohydrates to proteins, can influence properties of rMab drugs and has to be closely monitored during drug development and production. Scientists from the University of California (California, USA) have developed a new liquid chromatography–mass spectrometry (LC–MS) N-glycan library based on eight commercially available recombinant monoclonal antibodies, for the rapid identification of glycosylated structures.
Thirty percent of approved drugs will be based on recombinant monoclonal antibody (rMab) drugs over the next 10 years.1 Glycosylation, the convalent addition of carbohydrates to proteins, can influence properties of rMab drugs and has to be closely monitored during drug development and production. Scientists from the University of California (California, USA) have developed a new liquid chromatography–mass spectrometry (LC–MS) N-glycan library based on eight commercially available recombinant monoclonal antibodies, for the rapid identification of glycosylated structures.1
Carlito Lebrilla, corresponding author of the study, told The Column: “Many of today’s antibody drugs were developed over a decade ago when our methods for the analysis of the glycan were not as advanced. For this reason, there is very little relative effort spent on characterizing glycosylation.” This is now changing, according to Lebrilla, with the emergence of biosimilars and other biologics.
Eight commercial rMab drugs were treated to release N-glycans that were then separated on a porous graphitized column on a chip, and then analyzed using electrospray ionization hybrid quadrupole time-of-flight mass spectrometry (ESI–Q–TOF–MS). The retention time and accurate mass for over 70 structures was recorded within the library, allowing identification of glycosylated structures by matching LC retention times and accurate masses. - B.D.
Reference
1. T. Song, S. Ozcan, A. Becker, and C.B. Lebrilla, Analytical Chemistry DOI: 10.1021/ac501102t (2014).
This story originally appeared in The Column. Click here to view that issue.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.