A new method for the accurate molecular weight determination of the complex polysaccharides chitosans has been developed using asymmetric AF4 coupled with MALS and differential RI detectors.
Photo Credit: Artem Shadrin/stock.adobe.com
A new method for the accurate molecular weight determination of the complex polysaccharides chitosans has been developed using asymmetric flow field-flow fractionation (AF4) coupled with multi-angle light scattering (MALS) and differential refractive index (RI) detectors (1).
A highly sought-after biopolymer, chitosans have multiple functions with well over 200 current and potential applications across a wide range of scientific areas. They can be biologically sourced from the exoskeletons of various crustaceans and insects, as well as the cell walls of certain fungi and fish scales; however, many of its material and biological properties are heavily linked to the molecular weight (MW) of the polymer. Therefore, an accurate MW is crucial to the effective utilization of chitosans in industry.
Unfortunately, the actual task of accurate MW measurement is complicated by their biological source, which can vary greatly and also be affected by parameters such as the season of harvest, or the process of isolation of chitin and the deacetylation into chitosan. The traditional technique used for chitosan MW measurement has been size-exclusion chromatography (SEC); however, for more complex polysaccharides such as chitosans the use of SEC requires prefiltration of samples to remove interfering aggregate fractions, which is a time-consuming process and can lead to considerable sample loss.
The new method described by researchers uses AF4–MALS-RI to separate the polymer from the molecular aggregates found in chitosan solutions. The technique has the added advantage of being able to identify the aggregates present as well as separate them, thereby allowing the determination of MW for a wide range of chitosans while avoiding the sample loss found when using conventional SEC–MALS-RI methods. This was particularly evident for high-molecular-weight chitosans where the required filtration step prior to SEC resulted in a significant sample loss.
Reference
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.