In gas chromatography (GC), the sample vapor passes through the column and separates into its components ? a separation that is governed by the distribution between the mobile and stationary phases.
In gas chromatography (GC), the sample vapor passes through the column and separates into its components – a separation that is governed by the distribution between the mobile and stationary phases. The degree of separation between the sample and the stationary phase is determined by flow rate, the nature of the stationary phase, the surface area exposed to the carrier gas, and the column temperature. As a result, while solvent changes are commonly used in high performance liquid chromatography (HPLC), GC uses temperature changes to improve separations. As the individual components emerge from the column, the detector obtains a signal.
2011 GC regional distribution
The GC columns may be of two types: packed or capillary. Packed columns can accept a larger injection volume, but capillary columns have better separating power. There are a number of different detectors available as a function of the analyte constituent. These include thermal and electrolytic conductivity, flame ionization, electron capture, nitrogen–phosphorus, photoionization, mass selective, infrared, and atomic emission detectors.
GC is very well established in the U.S., Western Europe, and Japan, where the installed base is extremely large. In fact, North America and Europe combined account for nearly 60% of the worldwide GC demand. However, lower-end GC systems have become ubiquitous in areas such as Eastern Europe, China, India, and Latin America.
The foregoing data were extracted and adapted from SDi's recently published Global Assessment Report, 12th Edition. For more information, contact Glenn Cudiamat, VP of Research Services, Strategic Directions International, Inc., 6242 Westchester Parkway, Suite 100, Los Angeles, CA 90045, (310) 641-4982, fax: (310) 641-8851, e-mail: cudiamat@strategic-directions.com
RAFA 2024 Highlights: Contemporary Food Contamination Analysis Using Chromatography
November 18th 2024A series of lectures focusing on emerging analytical techniques used to analyse food contamination took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, Czech Republic. The session included new approaches for analysing per- and polyfluoroalkyl substances (PFAS), polychlorinated alkanes (PCAS), Mineral Oil Hydrocarbons (MOH), and short- and medium-chain chlorinated paraffins (SCCPs and MCCPs).
Pharmaceutical excipients, such as polyethylene glycol-based polymers, must be tested for the presence of ethylene oxide (EtO) and 1,4-dioxane as part of a safety assessment, according to USP Chapter <228>.
Profiling Volatile Organic Compounds in Whisky with GC×GC–MS
November 1st 2024Researchers from Austria, Greece, and Italy conducted a study to analyze volatile organic compounds (VOCs) present in Irish and Scotch whiskys using solid-phase microextraction (SPME) Arrow with comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC–MS) to examine the organoleptic characteristics that influence the taste of spirits.