Malaria is the 5th responsible cause of death from infectious disease worldwide, and approximately half the global population are at risk. 1A team of scientists in Missouri, USA3 has recently answered a long-standing question regarding the metabolism of the parasite, advancing research towards identifying novel therapeutics
Malaria is the 5th biggest killer worldwide and approximately half the global population are at risk1. The causativeagent of malaria, the parasite Plasmodiumfalciparum, is transmitted via the bite of aninfected Anopheles mosquito. Followingtransmission, the parasite is transportedvia the blood stream to the liver whereit multiplies and subsequently infects redblood cells (RBC’s) at the so-called bloodinfection stage2.
A team of scientists in Missouri, USA,3 hasrecently answered a long-standing questionregarding the metabolism of the parasite,advancing research towards identifyingnovel therapeutic targets.
To analyse the reaction products resultingfrom in vitro parasitic heme degradationpathways, a range of chromatographictechniques were used. HPLC (highperformance liquid chromatography)coupled to high resolution massspectrometry was used for the analysis ofreaction products generated during in vitroheme degradation; and both affinity andsize-exclusion chromatography were usedfor protein purification.
The leading author of the study, PaulSigala, told The Column: “Human infectionby Plasmodium falciparum parasites, thecausative agent of malaria, remains asevere public health problem worldwideand a better understanding of parasitemetabolism can clarify what are or are notappropriate therapeutic targets. Duringthe blood-infection stage, the parasitemust deal with a vast amount of heme,most of which is derived from digestion ofthe hemoglobin within red blood cells. Ithas remained unclear whether a portionof this heme is enzymatically processed byparasites for utilization or disposal. Ourstudy thus clarifies a fundamental aspectof parasite biology, which will focus effortson remaining pathways that are operativewithin parasites.”
It is hoped that these findings willadvance the understanding of malariacausing parasite transmission, furtheradvancing progress towards theidentification of valid therapeutic targets.
1. Centre for Disease Control, www.cdc.gov/malaria/about/facts.html (Accessed24th of September 2012).
2. World Health Organization: www.who.int/topics/malaria/en/ (Accessed 24th ofSeptember 2012).
3. Paul A. Sigala et al., The Journalof Biological Chemistry, DOI:10.1074/jbc.M112.414078(2012).
This story originally appeared in The Column. Click here to view that issue.
Polysorbate Quantification and Degradation Analysis via LC and Charged Aerosol Detection
April 9th 2025Scientists from ThermoFisher Scientific published a review article in the Journal of Chromatography A that provided an overview of HPLC analysis using charged aerosol detection can help with polysorbate quantification.
Analyzing Vitamin K1 Levels in Vegetables Eaten by Warfarin Patients Using HPLC UV–vis
April 9th 2025Research conducted by the Universitas Padjadjaran (Sumedang, Indonesia) focused on the measurement of vitamin K1 in various vegetables (specifically lettuce, cabbage, napa cabbage, and spinach) that were ingested by patients using warfarin. High performance liquid chromatography (HPLC) equipped with an ultraviolet detector set at 245 nm was used as the analytical technique.
Removing Double-Stranded RNA Impurities Using Chromatography
April 8th 2025Researchers from Agency for Science, Technology and Research in Singapore recently published a review article exploring how chromatography can be used to remove double-stranded RNA impurities during mRNA therapeutics production.