The 9th International Symposium on Packed Column SFC (SFC 2015) was held in Philadelphia, Pennsylvania, USA, on 22–24 July 2015. Selected highlights of both the oral and poster SFC 2015 programmes are reviewed in this synopsis.
Photo Credit: Bjoern Meyer/Getty Images
The 9th International Symposium on Packed Column SFC (SFC 2015) was held in Philadelphia, Pennsylvania, USA, on 22–24 July 2015. Selected highlights of both the oral and poster SFC 2015 programmes are reviewed in this synopsis.
ScaleUp
Supercritical fluid chromatography (SFC) has long been used for chiral analysis in support of pharmaceutical development, but implementation of the technology in a regulated GMP production has its challenges. Daniel Markowitz from Johnson Matthey Pharmaceutical Material and Services (New Jersey, USA) presented benefits of this green alternative to conventional solvent-based crystallizations and low-pressure chromatography. The effects of injection loops, stacked injections, UV scaling, resin selection as well as solvent and CO2 recycle at the plant scale were discussed. A new system was described that contained two 20-cm columns in parallel.
Jeffrey Kiplinger from Averica Discovery Services (Marlborough, Massachusetts, USA) reminded the audience that the only important criteria for adoption of a technology are economic. In this regard, batch-to-batch cross contamination and system clean-out protocols and alternative fractionation or collection design were considered. Direct measurement of economic impact can result in better instrument design and better planning for new technology implementation.
Theory
Interest concerning various phenomena taking place in a column used for packed column SFC (pcSFC) separations continues to be relatively high. Don Poe of the University of Minnesota (Duluth, USA) discussed the Joule–Thompson coefficient as a criterion for efficient operating conditions in SFC using porous and superficially porous packings in a convective air environment. The efficiency for elution of n-alkylbenzenes on 250-mm x 4.6-mm i.d. columns packed with 5-μm fully porous and superficially porous particles at optimum flow rates in a convective oven at 20 oC to 60 oC to 80 oC and pressures from 90 bar to 250 bar, with CO2 mobile phase containing 5%, 10%, and 20% methanol (v/v) was measured.
In a separate study, Ruben De Pauw from the Virje Universiteit Brussel (Belgium) identified and quantified the different contributions to extra-column band broadening in pcSFC, such as the influence of sample solvent, injection volume, extra-column volumes, and detector cell volume or design. Abhijit Tarafder from Waters Inc. (Milford, Massachusetts, USA) investigated how density gradient along a packed SFC column affects the overload band profiles of preparative SFC. A computer program that simulates changes in overloaded peak shapes as a function of density gradient at a given operating condition was used. Tarafder considered if having a steep density gradient in preparative SFC is always deleterious as in analytical situations, or if there could there be some advantage in having density gradients in prep-SFC.
Both Don Poe and Abhijit Tarafder preceded their technological presentations with a personal tribute to Professor Georges Guiochon formerly of the University of Tennessee (Knoxville, Tennessee, USA) with whom many manuscripts concerning pcSFC had been co-authored within the past five years.
Hyphenated Methods
The increasing demand for shortening development timelines in the pharmaceutical industry has made throughput analysis techniques very popular. Mohammad Al-Sayah from Genentech Inc. (South San Francisco, California, USA) described the development of an on-line two-dimensional chromatographic system utilizing reversed-phase liquid chromatography (LC) in the first dimension and SFC in the second dimension. The 2D LC–SFC system could achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The peaks of interest from the first reversed-phase LC dimension column were effectively focused as sharp concentration pulses on a small volume C18 trapping column and then injected onto the second dimension chiral pcSFC column. Full automation of the system was achieved.
Christine Aurigemma from Pfizer Inc. (San Diego, California, USA) discussed early efforts to implement open access analytical pcSFC–LC in the medicinal chemistry laboratory that would allow chemists to work more efficiently. Adapting the technology to align with the work habits of chemists will be a key factor in facilitating the adoption of SFC to boost chemist productivity and efficiency.
Stationary Phases
Daniel Armstrong of the University of Texas at Arlington (Arlington, Texas, USA) provided a lucid discussion of recent directions in pcSFC concerning chiral separations including new chiral selectors and small particle diameter column packings that will have a significant impact on the field. Another presentation by Vincent Desfontaine of the University of Geneva (Geneva, Switzerland) focused on the evaluation of new stationary phase chemistries in sub-2-µm and core–shell material for the analysis of basic compounds in SFC. Various representative sets of basic drugs were injected such as mixes of active pharmaceutical ingredients with their respective pharmacopoeia impurities. Different analytical conditions were also compared such as absence of additive, additive in the mobile phase, and additive in the injection solvent.
A lecture by Oleg Pokrovsky from the Kurnakov Institute of General and Inorganic Chemistry (Russia) concentrated on stationary phases where the separation of closely related compounds was not based on hydrogen bonding. In these instances the separation required involvement of other types of interaction such as electrostatic, dipole-induced dipole, or dispersion. A survey of several cases of non-hydrogen-bonding-driven separations of closely related compounds was considered such as xylenes, dichloroanilines, and methoxy-derivatives of psoralen. All ortho-substituted compounds eluted earlier than “ortho-free” isomers. A distinctly stronger retention of 3,4-dichloroaniline compared with 3,5- and other isomers confirmed the significance of dipole–dipole and other electrostatic intermolecular interactions in the separation of this model compound. Standard column screening revealed that no achiral column was able to separate meta- and para-xylene in pcSFC except porous graphitic carbon (PGC), which suggested that PGC differs substantially from both hydrogen bonding and non-hydrogen bonding silica-based phases in the elution order of dichloroanilines.
Polysaccharide-based chiral stationary phases (CSPs) are well recognized as a powerful tool in chiral separation. To clarify the potential and selectivity feature of these phases in achiral separations, Tohru Shibata and associates from Daicel Corp. (Japan) have systematically studied achiral isomer separations with polysaccharide-based phases under both high performance liquid chromatography (HPLC) and SFC conditions. The retention under both conditions roughly correlated, but inversion of elution order between isomers was sometimes observed. Nevertheless, these CSPs exhibited excellent potential for achiral separations and analysis in pcSFC as well as HPLC.
Applications – Cannabinoids
The cannabis industry is one of the fastest growing industries in the United States. Christopher Hudalla from ProVerde Laboratories Inc. (Milford, Massachusetts, USA) presented the development of a workflow based on supercritical fluid technologies for the analysis, extraction, and purification of cannabinoids for the preparation of cannabis-based therapeutics. Complementing this presentation was the lecture of Ira Lurie from George Washington University (Washington, DC, USA) entitled ultrahigh performance SFC for the analysis of synthetic cannabinoids. Presently there are over 20 synthetic cannabinoids under permanent or temporary federal control in the U.S. The effects of co-solvents, additives, pressure, temperature, and gradient slope on optimizing the separation were presented.
Applications – Medicinal
Productivity of modern medicinal chemistry requires instrumentation for automated synthesis and high throughput purification that can process a large number of samples within a meaningful timeframe. Gerard Rosse from Dart Neuroscience LLC (San Diego, California, USA) discussed the decision-making process for selecting pcSFC coupled to mass spectrometry (MS) as the prevailing method for compound purification. Instrumentation for analytical and preparative SFC–MS, infrastructure, logistics, workflows, and robotics to support the purification of >10,000 compounds each month was presented.
The application of SFC for chiral metabolite separations in a DMPK environment was discussed by Hermes Licea Perez from GlaxoSmithKline (King of Prussia, Pennsylvania, USA). A complex mixture of 14 stereoisomeric metabolites provided important data on which species circulate in the human body. pcSFC in combination with chemical derivatization was proven superior for the separation of four diastero-isomeric species of another drug development compound. The method was fully validated and applied to evaluate potential in vivo chiral conversion in pooled clinical and pre-clinical samples.
Implementation of SFC in regulated GMP laboratories has been somewhat slow, owing to limitations in instrument sensitivity, reproducibility, accuracy, and robustness. Michael Hicks from Merck Inc. (Rahway, New Jersey, USA) reported on an investigation into the use of modern pcSFC for enantio-purity analysis of several pharmaceutical intermediates and compared the results with conventional HPLC approaches historically used for analysis in a GMP setting. The findings clearly illustrated that modern pcSFC now exhibits a degree of precision, reproducibility, accuracy, and robustness comparable to that of HPLC.
Alexandre Grand-Guillaume Perenoud of the University of Geneva (Switzerland) focused on the evaluation of a modern pcSFC–HRMS (quadrupole-time-of-flight [QTOF]) platform as a potential key analytical tool to support bioactive identification. The preliminary screening step involved 15 different state-of-the-art stationary phases and over 100 natural compound standards. The author highlighted the applicability of SFC to the natural compound space, which included highly polar and very apolar molecules. In parallel, selected column chemistries have been identified as particularly well suited for the analysis of specific compound sub-classes. Finally, optimized analytical conditions were applied for the full characterization of several plant extracts.
Applications – General
Edgar Naegele from Agilent Technologies (Germany) lectured on the quantitative determination of multi-pesticide residues in vegetables by pcSFC coupled to triple quadrupole mass spectrometry. The final optimized method was performed on an amino column at a flow rate of 3 mL/min in a gradient with methanol as the organic modifier. The multi-pesticide sample comprised 17 pesticide compounds. For all compounds, the achieved linearity was better than 0.999, limits of quantification (LOQs) were typically below 2.9 ppm, retention time relative standard deviations (RSDs) were below 0.4%, and area RSDs were below 4%. Matrix effects were found in the recovery range of 70–120% and LOQs were at 10 ppb, which met typical requirements for quantitative determination of pesticides in a food matrix.
To minimize internal corrosion of carbon steel, chemical corrosion inhibitors are most frequently used. These materials are amine-based and as such exhibit high toxicity to aquatic organisms, hence stricter regulations have been imposed regarding the use and subsequent discharge of such chemicals in the environment through produced water. John Langley of the University of Southampton (Southampton, UK) reported on the preparation of a model corrosion inhibitor comprising quaternary amines, imidazolines, and imazolines for qualitative analysis using HPLC–MS and ultrahigh-performance SFC–MS (UHPSFC–MS). Use of modern pcSFC as the chromatographic separation decreased analysis times by eliminating the sample preparation step prior to analysis, especially in the case of crude oil, and reduced elution times by a factor of four when compared with HPLC.
Robert Campbell from Dow Chemical Company (Midland, Michigan, USA) noted further applications in a study of the composition of co-polymeric surfactant materials via pcSFC–MS with electrospray ionization. Frequently the spectra and chromatograms are too complex for interpretation with acceptable degrees of confidence. Software-assisted characterization has been used for deconvolution of the complex data sets. Factors such as adduct formation, multiple charging, and the degree of ionization were shown to complicate spectral interpretation. The resulting data analysis made possible the elucidation of detailed structural information with a high degree of confidence.
Supercritical Fluid Extraction
The FDA requires that at least 97% of caffeine be removed in order to call the product decaffeinated coffee. Supercritical carbon dioxide is an ideal fluid to apply to this process. Extraction is always performed on the green beans. Dried green beans are quite hard and dense so a wetting process, causing some swelling of the beans, is necessary before supercritical fluid extraction (SFE) can be performed. John Langley from Waters Corp. (Milford, Massachusetts, USA) demonstrated various extraction techniques as well as a method for the rapid and convenient determination of residual caffeine levels using SFC.
Best Posters
The subject of this year’s wining poster dealt with SFE. Jacquelyn Runco from Waters Inc. (Milford, Massachusetts, USA) demonstrated an SFE–SFC workflow to isolate target flavour compounds from vanilla beans and ground cinnamon. The use of automated processes such as solvent selection, mobile phase composition, and vessel switching allowed for quick extraction method screening. For both samples, multiple extraction parameters were evaluated to determine optimal yield and extract complexity.
The award for second place best poster presentation went to Takato Uchikata from Shimadzu Corp. (Kyoto, Japan) for extraction and analysis using on-line SFC–SFE–MS. The hyphenated system was capable of simultaneous multicomponent analysis with on-line automation of everything from sample pretreatment to separation and analysis. For example, in the analysis of pesticides in food products, the system took only five minutes for a complete analysis involving sample pre-treatment when compared with at least 35 min for conventional systems. Additional applications included the analysis of biomarkers from dried blood spots and extraction of trace additives in polymers.
SFC2016
A one-day SFC conference will be held in San Diego on 23 May 2016. SFC 2016 will be held in Vienna, Austria, on 5–7 October 2016. Oral and poster presentations will be solicited in the areas of SFC and SFE in Spring 2016. Information on both conferences can be found at www.greenchemistrygroup.org.
Larry T. Taylor is emeritus professor of chemistry at Virginia Tech, Blacksburg, Virginia, USA, programme co-chair for SFC 2015/2016, and member of the Green Chemistry Group.
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.