A new method for tuberculosis detection using gas chromatography–mass spectrometry has been developed.
Photo Credit: Science Photo Library/Getty Images
A new method for tuberculosis (TB) detection using gas chromatography–mass spectrometry (GC–MS) has been developed.1 Using an established biomarker known as Lipoarabinomannan (LAM), researchers have simplified a previously validated method measuring the closely linked D-arabinose.
According to the World Health Organization (WHO), in 2013, an estimated 9.0 million people developed TB with 1.5 million dying.2 A total of 360,000 of those were HIV positive, attesting to the close association of TB with HIV.2
Fortunately, TB is declining globally as a result of effective diagnosis and treatment. However, diagnosis relies on the demonstration of the bacteria responsible for TB, Mycobacterium tuberculosis (Mtb). This is accomplished using microscopy, cultures, and molecular testing, a time-consuming and expensive procedure.
TB remains unique among the major infectious diseases because it lacks an accurate and rapid point-of-care test. This is primarily the result of insufficient progress in biomarker discovery.2
In 2010 the WHO endorsed the Xpert MTB/RIF test for use in TB endemic countries.3 As a cartridge-based and automated diagnostic test, the Xpert MTB/RIF test represented a major milestone. The device identifies Mtb DNA and mutations associated with resistance to rifampicin (RIF) by nucleic acid amplification technique (NAAT).4,5,6
However, a reliable biomarker, if detectable on a simple, portable, and low cost platform, could greatly increase early detection, reducing not only disease morbidity but also transmission and support global TB control.
Current commercial detection assays measure LAM in urine as a marker for TB but these exhibit poor sensitivity, especially in individuals with a healthy immune system. This new method isolates LAM and converts it into its constituent monosaccharides (that is, D-arabinose, D-mannose) before quantifying D-arabinose as a proxy for LAM, using GC–MS.
Results indicated this method was effective and was successfully able to detect and measure urinary LAM in human clinical specimens by quantifying D-arabinose using chemical derivatization and GC–MS. Importantly this method was
non-discriminatory, with no dependence on country of origin, HIV coâinfection, or BCG vaccination. - L.B.
References
Characterizing Plant Polysaccharides Using Size-Exclusion Chromatography
April 4th 2025With green chemistry becoming more standardized, Leena Pitkänen of Aalto University analyzed how useful size-exclusion chromatography (SEC) and asymmetric flow field-flow fractionation (AF4) could be in characterizing plant polysaccharides.
Investigating the Protective Effects of Frankincense Oil on Wound Healing with GC–MS
April 2nd 2025Frankincense essential oil is known for its anti-inflammatory, antioxidant, and therapeutic properties. A recent study investigated the protective effects of the oil in an excision wound model in rats, focusing on oxidative stress reduction, inflammatory cytokine modulation, and caspase-3 regulation; chemical composition of the oil was analyzed using gas chromatography–mass spectrometry (GC–MS).