A new method for tuberculosis detection using gas chromatography–mass spectrometry has been developed.
Photo Credit: Science Photo Library/Getty Images
A new method for tuberculosis (TB) detection using gas chromatography–mass spectrometry (GC–MS) has been developed.1 Using an established biomarker known as Lipoarabinomannan (LAM), researchers have simplified a previously validated method measuring the closely linked D-arabinose.
According to the World Health Organization (WHO), in 2013, an estimated 9.0 million people developed TB with 1.5 million dying.2 A total of 360,000 of those were HIV positive, attesting to the close association of TB with HIV.2
Fortunately, TB is declining globally as a result of effective diagnosis and treatment. However, diagnosis relies on the demonstration of the bacteria responsible for TB, Mycobacterium tuberculosis (Mtb). This is accomplished using microscopy, cultures, and molecular testing, a time-consuming and expensive procedure.
TB remains unique among the major infectious diseases because it lacks an accurate and rapid point-of-care test. This is primarily the result of insufficient progress in biomarker discovery.2
In 2010 the WHO endorsed the Xpert MTB/RIF test for use in TB endemic countries.3 As a cartridge-based and automated diagnostic test, the Xpert MTB/RIF test represented a major milestone. The device identifies Mtb DNA and mutations associated with resistance to rifampicin (RIF) by nucleic acid amplification technique (NAAT).4,5,6
However, a reliable biomarker, if detectable on a simple, portable, and low cost platform, could greatly increase early detection, reducing not only disease morbidity but also transmission and support global TB control.
Current commercial detection assays measure LAM in urine as a marker for TB but these exhibit poor sensitivity, especially in individuals with a healthy immune system. This new method isolates LAM and converts it into its constituent monosaccharides (that is, D-arabinose, D-mannose) before quantifying D-arabinose as a proxy for LAM, using GC–MS.
Results indicated this method was effective and was successfully able to detect and measure urinary LAM in human clinical specimens by quantifying D-arabinose using chemical derivatization and GC–MS. Importantly this method was
non-discriminatory, with no dependence on country of origin, HIV coâinfection, or BCG vaccination. - L.B.
References
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.