The Application Notebook
Dionex Application note
Leo (Jinyuan) Wang and William C. Schnute, Dionex Corporation, Sunnyvale, California, USA.
This rapid LC–MS method shows sensitive and selective separation of five ethanolamine analytes in wastewater.
Ethanolamines have been used as bio- and environmental markers for nitrogen mustards to measure potential exposures because direct quantification of nitrogen mustards is difficult due to their instability.1 Ethanolamines are also manufactured in large volume (over half a million tons per year) for a wide range of industrial and domestic uses such as in the manufacture of pesticides, emulsifying agents and detergents, and bactericides and cosmetics.2 To monitor the removal of ethanolamines from industrial discharged wastewater and the extent of human and environmental exposure to nitrogen mustards, a quantitative analytical method is desired.
An LC–MS method is described here using a mixed-mode column featuring reversed phase and cation exchange retention mechanisms providing sufficient retention and resolution for all analytes in 6 min. The MSQ Plus mass spectrometric detector was operated in selected ion monitoring (SIM) mode to ensure sensitive and selective subppb level detection.
This study was performed on a Dionex UltiMate 3000 LC system. The separation was achieved on an Acclaim Trinity P1 column (2.1 × 100 mm, 3 µm) operated at 20 °C. The isocratic mobile phase used for the separation was composed of 90% CH3CN, 7% DI water, and 3% ammonium formate buffer (pH 3.7, 100 mM) with a flow-rate of 0.5 mL/min. A 20 µL aliquot of each sample was injected for analysis.
An electrospray ionization (ESI) source was used to couple the LC–MS system, with the needle voltage set at 1000 V and probe temperature set at 500 °C. Nitrogen was used as the nebulizer gas at 80 psi. The MSQ Plus system was operated in positive SIM mode with optimized collision voltages for each of the analyte m/z values: ethanolamine (EA): m/z 62, 30 V; diethanolamine (DEA): m/z 106, 40 V; diethanolamine-d8 (DEA-IS): m/z 114, 40 V; N-methyldiethanolamine (MDEA): m/z 120, 30 V; N-ethyldiethanolamine (EDEA): m/z 134, 35 V; triethanolamine (TEA): m/z 150, 45 V.
As seen in Figure 1, the five target ethanolamines were retained and separated on the Trinity column within 5 min and selectively detected using SIM scans. Sub-ppb analyte levels can be routinely quantified using this method, with Figure 1 showing the chromatograms of a standard containing 1 ppb of each analyte. Excellent coefficient of determination was achieved with R2 greater than 0.99 for each analyte from its detection limit to 100 ppb. Detection limits were defined as the lowest concentration of calibration standard showing a signal-to-noise ratio greater than 5 (1 ppb for ethanolamine, and 0.1 ppb for all other target analytes).
Figure 1: Analysis of five target ethanolamines (1.0 ppb each) by LCâMS.
1. R.M. Black and R.W.J. Read, Chromatogr., 449, 261–270 (1998).
2. C. Edser, Focus on Surfactants, 7, 1–2 (2004).
UltiMate and Acclaim are registered trademarks, and Trinity is a trademark of Dionex Corporation. MSQ Plus is a trademark of Thermo Fisher Scientific.
Dionex Corporation
1228 Titan Way, PO Box 3603, Sunnyvale, California 94088, USA
tel. +1 408 737 0700 fax +1 408 730 9403
Website: www.dionex.com
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.