The Application Notebook
Dionex Application note
Leo (Jinyuan) Wang and William C. Schnute, Dionex Corporation, Sunnyvale, California, USA.
This rapid LC–MS method shows sensitive and selective separation of five ethanolamine analytes in wastewater.
Ethanolamines have been used as bio- and environmental markers for nitrogen mustards to measure potential exposures because direct quantification of nitrogen mustards is difficult due to their instability.1 Ethanolamines are also manufactured in large volume (over half a million tons per year) for a wide range of industrial and domestic uses such as in the manufacture of pesticides, emulsifying agents and detergents, and bactericides and cosmetics.2 To monitor the removal of ethanolamines from industrial discharged wastewater and the extent of human and environmental exposure to nitrogen mustards, a quantitative analytical method is desired.
An LC–MS method is described here using a mixed-mode column featuring reversed phase and cation exchange retention mechanisms providing sufficient retention and resolution for all analytes in 6 min. The MSQ Plus mass spectrometric detector was operated in selected ion monitoring (SIM) mode to ensure sensitive and selective subppb level detection.
This study was performed on a Dionex UltiMate 3000 LC system. The separation was achieved on an Acclaim Trinity P1 column (2.1 × 100 mm, 3 µm) operated at 20 °C. The isocratic mobile phase used for the separation was composed of 90% CH3CN, 7% DI water, and 3% ammonium formate buffer (pH 3.7, 100 mM) with a flow-rate of 0.5 mL/min. A 20 µL aliquot of each sample was injected for analysis.
An electrospray ionization (ESI) source was used to couple the LC–MS system, with the needle voltage set at 1000 V and probe temperature set at 500 °C. Nitrogen was used as the nebulizer gas at 80 psi. The MSQ Plus system was operated in positive SIM mode with optimized collision voltages for each of the analyte m/z values: ethanolamine (EA): m/z 62, 30 V; diethanolamine (DEA): m/z 106, 40 V; diethanolamine-d8 (DEA-IS): m/z 114, 40 V; N-methyldiethanolamine (MDEA): m/z 120, 30 V; N-ethyldiethanolamine (EDEA): m/z 134, 35 V; triethanolamine (TEA): m/z 150, 45 V.
As seen in Figure 1, the five target ethanolamines were retained and separated on the Trinity column within 5 min and selectively detected using SIM scans. Sub-ppb analyte levels can be routinely quantified using this method, with Figure 1 showing the chromatograms of a standard containing 1 ppb of each analyte. Excellent coefficient of determination was achieved with R2 greater than 0.99 for each analyte from its detection limit to 100 ppb. Detection limits were defined as the lowest concentration of calibration standard showing a signal-to-noise ratio greater than 5 (1 ppb for ethanolamine, and 0.1 ppb for all other target analytes).
Figure 1: Analysis of five target ethanolamines (1.0 ppb each) by LCâMS.
1. R.M. Black and R.W.J. Read, Chromatogr., 449, 261–270 (1998).
2. C. Edser, Focus on Surfactants, 7, 1–2 (2004).
UltiMate and Acclaim are registered trademarks, and Trinity is a trademark of Dionex Corporation. MSQ Plus is a trademark of Thermo Fisher Scientific.
Dionex Corporation
1228 Titan Way, PO Box 3603, Sunnyvale, California 94088, USA
tel. +1 408 737 0700 fax +1 408 730 9403
Website: www.dionex.com
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.