Researchers from the Université de Pau et des Pays de l’Adour, in France, have developed a large volume injection method using a programmed temperature vaporization (PTV) injector for the simultaneous determination of mercury, tin, and lead at ultra-trace levels in natural waters using GC–ICP-MS.
Photo Credit: kpatyhka/Shutterstock.com
Researchers from the Université de Pau et des Pays de l’Adour, in France, have developed a large volume injection method using a programmed temperature vaporization (PTV) injector for the simultaneous determination of mercury (Hg), tin (Sn), and lead (Pb) at ultra-trace levels in natural waters using gas chromatography–inductively coupled plasma mass spectrometry (GC–ICP-MS) (1).
Mercury, tin, and lead are among the most problematic organometallic species. Their high toxicity even at trace levels and ability to bioaccumulate and bioamplify along food chains makes them dangerous when they are present in the environment. Mercury in particular is widespread in aquatic ecosystems, and has both natural and anthropogenic origins as inorganic mercury (IHg) will form monomethylmercury (MMHg) through a biomethylation process, which will then bioamplify along food chains (2,3). MMHg is a potent neurotoxin (5), whereas the toxological role of IHg is still under discussion (6).
On the other hand, tin is a common contaminant in water environments because of its historic use in anti-fouling paints, pesticide formulations, wood preservatives, and polymer additives. As a powerful biocide, organotin compounds were regularly used on marine vessels until their ban in 2008 (6). However, their sedimentary legacy still remains, with dredging activities causing issues to resurface.
Similar to tin, lead contamination stems from human activity. The use of tetraethyllead as an anti-knocking additive in gasoline was a particularly common source until it was phased out in the mid-1970s (7). However, lead continues to find its way into the environment, from runoff waters from human activities such as mineral extraction and processing, smelting and refining, power generation, battery plants, and waste disposal or incineration (8). Organolead compounds are neurotoxic in nature (9).
With ever more stringent environmental quality standards (EQS) being set, the challenge for analytical chemists to detect trace levels of compounds in water environments has become greater. In order to monitor and investigate the fate of these compounds-and their many forms-in the environment, increasingly sensitive analytical methods are required. To address this, researchers sought to develop an on-line preconcentration method using a PTV inlet in combination with GC–ICP-MS to simultaneously determine the amount of Hg, Sn, and Pb in natural water.
The reported method was found to be very sensitive and, following optimization of the PTV parameters, absolute and methodological detection limits were found to be in the pg/L level, which is below EU requirements. Using unpolluted river water samples, researchers tested the applicability of the method with all targeted compounds being quantified with very good precisions.
References
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.