A simple and rapid ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS–MS) method to identify new psychoactive substances (NPS) in hair has been published.
Volume 11, Issue 2, p7
(Photo Credit: Getty Images/Biran Hagiwara)
A simple and rapid ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS–MS) method to identify new psychoactive substances (NPS) in hair was recently published in the Journal of Chromatography A.1
The growth of the NPS market in recent years has become the driving force behind the need for a rapid and sensitive identification of these drugs. Hair is an excellent matrix to investigate drug use because it allows the determination of drugs that accumulate in keratinized tissues. It also allows a more retrospective analysis of an individual’s drug habits that can correspond to several months of ingestion. Hair analysis can also be focused specifically on the parent drug, making it very valuable to the forensic toxicologist.
Two samples of 30 g of hair were washed and decontaminated and then cut into small pieces of 1 mm. Sample preparation was followed depending on which class of NPS to be extracted: 300 μL of formic acid 0.1% for cathinones, piperazines, and amphetamine type substances; and 300 μL of methanol for synthetic cannabinoids. The samples were then analyzed using UHPLC–MS–MS in electrospray ionization (ESI) mode. The limits of detection (LODs) varied from 2–20 pg/mg. The method was linear from the limit of quantification (LOQ) to 500 pg/mg and showed acceptable precision (%RSD<15) and accuracy (%E<15) for all the analytes.
The method was also applied to 50 authentic hair samples from real cases, such as workplace drug testing and driving licence renewals. The team detected synthetic cannabinoids in three of the samples, cathinones or ephedrines in four, and ketamine in two.
The team concluded that the UHPLC–MS–MS method allowed the identification of synthetic cannabinoids, cathinones, and other stimulants in hair samples with a simple preâtreatment step. The method has the potential to monitor the spread of NPS across the world. - K.M.
Reference
1. Sabina Strano-Rossi, Sara Odoardi, Marco Fisichella, Luca Anzillotti, Rossella Gottardo, and Franco Tagliaro, Journal of Chromatography A1372, 145–156 (2014).
This article is from The Column. The full issue can be found here>>
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.