A simple and rapid ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS–MS) method to identify new psychoactive substances (NPS) in hair has been published.
Volume 11, Issue 2, p7
(Photo Credit: Getty Images/Biran Hagiwara)
A simple and rapid ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS–MS) method to identify new psychoactive substances (NPS) in hair was recently published in the Journal of Chromatography A.1
The growth of the NPS market in recent years has become the driving force behind the need for a rapid and sensitive identification of these drugs. Hair is an excellent matrix to investigate drug use because it allows the determination of drugs that accumulate in keratinized tissues. It also allows a more retrospective analysis of an individual’s drug habits that can correspond to several months of ingestion. Hair analysis can also be focused specifically on the parent drug, making it very valuable to the forensic toxicologist.
Two samples of 30 g of hair were washed and decontaminated and then cut into small pieces of 1 mm. Sample preparation was followed depending on which class of NPS to be extracted: 300 μL of formic acid 0.1% for cathinones, piperazines, and amphetamine type substances; and 300 μL of methanol for synthetic cannabinoids. The samples were then analyzed using UHPLC–MS–MS in electrospray ionization (ESI) mode. The limits of detection (LODs) varied from 2–20 pg/mg. The method was linear from the limit of quantification (LOQ) to 500 pg/mg and showed acceptable precision (%RSD<15) and accuracy (%E<15) for all the analytes.
The method was also applied to 50 authentic hair samples from real cases, such as workplace drug testing and driving licence renewals. The team detected synthetic cannabinoids in three of the samples, cathinones or ephedrines in four, and ketamine in two.
The team concluded that the UHPLC–MS–MS method allowed the identification of synthetic cannabinoids, cathinones, and other stimulants in hair samples with a simple preâtreatment step. The method has the potential to monitor the spread of NPS across the world. - K.M.
Reference
1. Sabina Strano-Rossi, Sara Odoardi, Marco Fisichella, Luca Anzillotti, Rossella Gottardo, and Franco Tagliaro, Journal of Chromatography A1372, 145–156 (2014).
This article is from The Column. The full issue can be found here>>
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.