LCGC North America
Improve your analysis of ionizable analytes with these hints and tips.
In chromatography, “like dissolves like”; that is, nonpolar analytes interact well with nonpolar stationary phases and vice versa. Increased and improved interactions with the stationary phase lead to higher distribution constant (kd) values and generally improved separations. Neutral or ion-suppressed analytes are less polar than ionized analytes and will therefore have improved retention on nonpolar reversed-phase type stationary phases, while in their ionized forms they will exhibit decreased retention. The mobile-phase pH can have a dramatic effect on the ionization state of ionizable analytes, so it must be fixed by buffers to maintain the analyte in the desired state.
Knowledge of the functional group chemistry and the associated pKa of an analyte will allow for tuning of the mobile-phase pH. The pKa gives an indication of the strength of the acid or the base; however, it cannot be decided from the pKa alone if the molecule is an acid or a base-the functional groups contained within the molecule must also be known. For example, the pKa of aspirin and diazepam are very similar (3.5 and 3.3, respectively). Aspirin is a weak acid because it contains carboxylic acid groups, and diazepam is a weak base and contains basic nitrogen functional groups. The pH will affect the extent of analyte ionization, which will in turn influence elution and retention properties. For an acidic analyte, in a buffered solution, the addition of an acid will lower the pH and the analyte will become less ionized. The change in degree of ionization happens over a limited pH range because of pH and pKa being logarithmic: 1 pH unit away from the pKa, the extent of ionization is ~90%; at 2 pH units away from the pKa, the extent of ionization is ~99%; and at 3 pH units it is 99.9% (Figure 1). At a pH equal to the pKa an ionizable molecule will be 50% ionized and 50% non-ionized, which can lead to poor peak shape.
Figure 1: 2 pH unit rule for determining the extent of ionization of acidic and basic analytes.
Unlike ionized acids, which are eluted rapidly from the column when charged, protonated bases may have long retention times and poor peak shape because of interaction with silanol species on the silica surface. Separations of basic compounds are not usually carried out under ion-suppression conditions because the increase in pH to produce the neutral species would damage traditional silica columns (although hybrid columns can be used at extremes of pH). Traditionally, the analysis of weak bases is carried out at low pH so that surface silanol species are non-ionized (pKa 3.5–4.5), which results in improved peak shape.
Mobile-phase pH is controlled using a buffer consisting of a weak acid or base in cosolution with its conjugate acid or base. Buffers are only reliable within 1 pH unit either side of their pKa, and their concentration must be adequate but not excessive: below 10 mM buffers will have very little buffering capacity; above 50 mM, there is a high risk of precipitation of the salt in the presence of high organic concentration, hence, concentrations of 25–50 mM are typical. For liquid chromatography–mass spectrometry (LC–MS) applications the buffer must be volatile. It is good practice to prepare buffers daily because pH can change on standing due to ingress of carbon dioxide.
Sacrificial bases or ion-pair reagents can be used to improve peak shape or retention of basic analytes. Sacrificial bases are sterically small, highly surface active species (for example, triethylamine) that preferentially interact with surface silanol groups. They are added to the mobile phase in sufficient concentration (10–100 mM) to ensure full surface coverage. Modern, high purity, low-silanol packing materials negate the need for sacrificial bases.
Ion-pair reagents can be used when other methods such as ion suppression have not been successful. Samples containing both anionic and cationic components have one type “masked” by the ion-pair reagent and the other suppressed by pH. This technique is useful if analyte pKa values are not similar. For example, tetrabutylammonium phosphate at pH 7.5 forms a strong ion pair with acids and pH suppresses weak base ions. Ion-pair reagents do have disadvantages, including long equilibration times (>100 column volumes); difficult removal from columns (it is recommended that a guard column or dedicated column is used); irreversible modification of the stationary phase, which drastically reduces lifetime; neutral analytes precluded from the stationary phase at very high ion pair concentrations, which results in decreased retention; and interference from ultraviolet (UV) activity of some ion-pair reagents at the analytical wavelengths being used (such as trifluoroacetic acid, 210 nm). Finally, ion-pair reagents are not suitable for LC–MS work because they suppress ion formation and reduce sensitivity. Alternative approaches, such as hydrophilic-interaction chromatography (HILIC) and mixed-mode chromatography, can be used for LC–MS. Another alternative is the use of modified column chemistries that have counterions built in as part of the stationary phase; these embedded functional groups can be activated by changing the mobile-phase pH, without the need for additional chemical modifiers.
Find this webcast at http://www.chromacademy.com/critical-evaluation-hplc-methods-2016.html?tpm=1_1 (free until July 20).
SPME GC-MS–Based Metabolomics to Determine Metabolite Profiles of Coffee
November 14th 2024Using a solid phase microextraction gas chromatography-mass spectrometry (SPME GC-MS)-based metabolomics approach, a recent study by the School of Life Sciences and Technology at Institut Teknologi Bandung (Indonesia) investigated the impact of environmental factors (including temperature, rainfall, and altitude) on volatile metabolite profiles of Robusta green coffee beans from West Java.
RP-HPLC Analysis of Polyphenols and Antioxidants in Dark Chocolate
November 13th 2024A recent study set out to assess the significance of geographical and varietal factors in the content of alkaloids, phenolic compounds, and the antioxidant capacity of chocolate samples. Filtered extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) and spectrophotometric methods to determine individual phenolics and overall indexes of antioxidant and flavonoid content.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Katelynn Perrault Uptmor Receives the 2025 LCGC Emerging Leader in Chromatography Award
Published: November 13th 2024 | Updated: November 13th 2024November 13, 2024 – LCGC International magazine has named Katelynn A. Perrault Uptmor, Assistant Professor of Chemistry at the College of William & Mary, the recipient of the 2025 Emerging Leader in Chromatography Award. This accolade, which highlights exceptional achievements by early-career scientists, celebrates Perrault Uptmor’s pioneering work in chromatography, particularly in the fields of forensic science, odor analysis, and complex volatile organic compounds (VOCs) research.