LCGC North America
Improve your analysis of ionizable analytes with these hints and tips.
In chromatography, “like dissolves like”; that is, nonpolar analytes interact well with nonpolar stationary phases and vice versa. Increased and improved interactions with the stationary phase lead to higher distribution constant (kd) values and generally improved separations. Neutral or ion-suppressed analytes are less polar than ionized analytes and will therefore have improved retention on nonpolar reversed-phase type stationary phases, while in their ionized forms they will exhibit decreased retention. The mobile-phase pH can have a dramatic effect on the ionization state of ionizable analytes, so it must be fixed by buffers to maintain the analyte in the desired state.
Knowledge of the functional group chemistry and the associated pKa of an analyte will allow for tuning of the mobile-phase pH. The pKa gives an indication of the strength of the acid or the base; however, it cannot be decided from the pKa alone if the molecule is an acid or a base-the functional groups contained within the molecule must also be known. For example, the pKa of aspirin and diazepam are very similar (3.5 and 3.3, respectively). Aspirin is a weak acid because it contains carboxylic acid groups, and diazepam is a weak base and contains basic nitrogen functional groups. The pH will affect the extent of analyte ionization, which will in turn influence elution and retention properties. For an acidic analyte, in a buffered solution, the addition of an acid will lower the pH and the analyte will become less ionized. The change in degree of ionization happens over a limited pH range because of pH and pKa being logarithmic: 1 pH unit away from the pKa, the extent of ionization is ~90%; at 2 pH units away from the pKa, the extent of ionization is ~99%; and at 3 pH units it is 99.9% (Figure 1). At a pH equal to the pKa an ionizable molecule will be 50% ionized and 50% non-ionized, which can lead to poor peak shape.
Figure 1: 2 pH unit rule for determining the extent of ionization of acidic and basic analytes.
Unlike ionized acids, which are eluted rapidly from the column when charged, protonated bases may have long retention times and poor peak shape because of interaction with silanol species on the silica surface. Separations of basic compounds are not usually carried out under ion-suppression conditions because the increase in pH to produce the neutral species would damage traditional silica columns (although hybrid columns can be used at extremes of pH). Traditionally, the analysis of weak bases is carried out at low pH so that surface silanol species are non-ionized (pKa 3.5–4.5), which results in improved peak shape.
Mobile-phase pH is controlled using a buffer consisting of a weak acid or base in cosolution with its conjugate acid or base. Buffers are only reliable within 1 pH unit either side of their pKa, and their concentration must be adequate but not excessive: below 10 mM buffers will have very little buffering capacity; above 50 mM, there is a high risk of precipitation of the salt in the presence of high organic concentration, hence, concentrations of 25–50 mM are typical. For liquid chromatography–mass spectrometry (LC–MS) applications the buffer must be volatile. It is good practice to prepare buffers daily because pH can change on standing due to ingress of carbon dioxide.
Sacrificial bases or ion-pair reagents can be used to improve peak shape or retention of basic analytes. Sacrificial bases are sterically small, highly surface active species (for example, triethylamine) that preferentially interact with surface silanol groups. They are added to the mobile phase in sufficient concentration (10–100 mM) to ensure full surface coverage. Modern, high purity, low-silanol packing materials negate the need for sacrificial bases.
Ion-pair reagents can be used when other methods such as ion suppression have not been successful. Samples containing both anionic and cationic components have one type “masked” by the ion-pair reagent and the other suppressed by pH. This technique is useful if analyte pKa values are not similar. For example, tetrabutylammonium phosphate at pH 7.5 forms a strong ion pair with acids and pH suppresses weak base ions. Ion-pair reagents do have disadvantages, including long equilibration times (>100 column volumes); difficult removal from columns (it is recommended that a guard column or dedicated column is used); irreversible modification of the stationary phase, which drastically reduces lifetime; neutral analytes precluded from the stationary phase at very high ion pair concentrations, which results in decreased retention; and interference from ultraviolet (UV) activity of some ion-pair reagents at the analytical wavelengths being used (such as trifluoroacetic acid, 210 nm). Finally, ion-pair reagents are not suitable for LC–MS work because they suppress ion formation and reduce sensitivity. Alternative approaches, such as hydrophilic-interaction chromatography (HILIC) and mixed-mode chromatography, can be used for LC–MS. Another alternative is the use of modified column chemistries that have counterions built in as part of the stationary phase; these embedded functional groups can be activated by changing the mobile-phase pH, without the need for additional chemical modifiers.
Find this webcast at http://www.chromacademy.com/critical-evaluation-hplc-methods-2016.html?tpm=1_1 (free until July 20).
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.