LCGC Europe
Gas chromatography makes use of a wide variety of detection methods. In addition to the most often used flame-ionization detection (FID), electron-capture detection (ECD), thermal conductivity detection (TCD), and mass-selective detection (MSD), the list of other detection methods is long. They really shine when deployed properly, but their properties and applications can be a bewildering alphabet soup. This instalment presents a compendium of gas chromatography (GC) detection methods, both past and vanished as well as those that are current and relevant to today’s separation challenges.
John V. Hinshaw, GC Connections Editor
Gas chromatography makes use of a wide variety of detection methods. In addition to the most often used flame-ionization detection (FID), electron-capture detection (ECD), thermal conductivity detection (TCD), and mass-selective detection (MSD), the list of other detection methods is long. They really shine when deployed properly, but their properties and applications can be a bewildering alphabet soup. This instalment presents a compendium of gas chromatography (GC) detection methods, both past and vanished as well as those that are current and relevant to today’s separation challenges.
In the six and a half decades since its inception, gas chromatography (GC) has seen a wide variety of detection methods. Four of them arguably account for greater than 90% of applications today (1): flameâionization detection (FID), thermal conductivity detection (TCD), electron-capture detection (ECD), and mass-selective detection (MSD). Many more detectors are found in modern chromatography laboratories in smaller quantities, and a few have found their way into the dusty closet of retirement. Ranging from FID to electroantennographic detection (EAD), which uses insect antennae as the sensing elements, GC detection methods cover a wide range of sensitivity and selectivity that is unsurpassed by any other separation method. In 2015, McNair and Schug, writing in “GC Connections” (2), addressed the history and capabilities of eight major GC detection methods, ranging from TCD to the newest member: vacuum ultraviolet (VUV) detection. Along with these mainstream detection methods, the sheer number that are in active use or have been in the past is remarkable-nearly 30 are listed here in Tables 1 and 2. This is not a comprehensive list. Some chromatographers have chosen to use other names and abbreviations, and certainly other varieties may be found that are not as visible to literature searches.
Detector Taxonomy
The International Union of Pure and Applied Chemistry (IUPAC) recently published updated recommendations regarding separation science terminology (3). The publication defines three general types of chromatographic detector. A universal detector, such as the thermal conductivity detector, responds to any compound in the column effluent that is different than the carrier gas. A specific detector responds only to certain chemically related materials. The electronâcapture detector with halogenated compounds, or the aptly named nitrogen–phosphorus detector with nitrogen or phosphorus compounds, are both specific detectors. Selective detectors respond to groups of compounds that possess a common measurable characteristic such as mass or spectral absorbance. MSD falls into this group along with VUV and infrared detection (IRD or GC–IR).
The boundaries between these classification are not always clearly defined. Flame photometric detection (FPD), for example, responds to selected spectral emission lines of eluted compounds, and might be considered a selective detection method, but the spectral lines are emitted only by molecules containing certain elements, and thus FPD also is a specific detection method. In a practical sense, FPD is used for its element-specific characteristics, not its spectrally selective nature, so it is best considered a specific detection method. The same logic can be applied to other detection methods.
There is no standard for naming chromatographic detection methods. GC detection method names most often reflect modes of selectivity and specificity. FID, photoionization detection (PID), and many others are generally named after their operating principles. NPD, named for its element specificity, has an alias that refers to its physics: thermionic specific detection (TSD). The latter name is broader and encompasses other operating modes of thermionic detection that are sensitive to other heteroatoms.
Scientists have a love–hate affair with acronyms and abbreviations. They are convenient, short, and easy to misuse. Gas chromatographers have their own unique set that fortunately are related almost oneâtoâone with GC devices, detectors, inlets, columns, and so-on. For the new (gas) chromatographer the sheer number of terms is bewildering. Perhaps this list can be of assistance navigating the detector bazaar.
Gas chromatography continues to evolve. Every year new GC-related devices appear in publications and in the marketplace. Three new GC detectors have appeared in recent years-vacuum ultraviolet and barrier ionization detectors, and a postcolumn reaction detector. The bulk of GC detectors continues to see significant application, while only a few have really fallen away into disuse.
References
“GC Connections” editor John V. Hinshaw is a senior scientist at Serveron Corporation in Beaverton, Oregon, USA, and a member of LCGC Europe’s editorial advisory board. Direct correspondence about this column to the author via e-mail: LCGCedit@ubm.com
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.