The Application Notebook
Malvern Instruments
Proteins of the Bcl-2 family are molecular transducers sensitive to internal and external apoptotic signals that play a key role in the regulation of apoptosis. Their aggregation can lead to the formation of amyloid fibres because of protein misfolding; these are associated with numerous diseases.
The work described in this application note focused on the in vitro formation of aggregates by a Bcl-2 protein initiated by incubation of the protein at 37 °C. Multi-detection size-exclusion chromatography (SEC) was used to characterize the early events occurring during the aggregation process following incubation for 1 day and 1 week. SEC was performed using a Superose 6HR (GE Healthcare) with a buffer of 20 mM sodium phosphate, pH 8, and 150 mM sodium chloride. The Viscotek TDA with UV, RI, light scattering, and viscometer detectors was used to determine the molecular weight (MW) and intrinsic viscosity (IV).
Figure 1 is a typical chromatogram following 1 day of incubation at 37 °C. Three main species were detected, with molecular weights of 74 kDa, 51 kDa, and 25 kDa. The main population of this sample was found to be the protein's monomer. An additional species was detected by the light scattering detector eluting at 11 mL, which is a high-molecular-weight aggregate but at very low concentration.
Figure 1: Chromatogram of Bcl-2 from the Viscotek TDAmax. RALS (green line) and refractive index detector (red line). Inset shows the molecular weight distribution of the different species within the sample.
The samples were also analyzed after incubation for 1 week at 37 °C. Following this extended incubation period more aggregates were found to have formed. The SEC experiments showed that the first step of the fiber growth is the formation of small aggregates, mostly dimers and trimers, which further assemble into larger aggregates. This information was only possible to obtain with the use of multi-detector SEC using the TDA system.
Work performed in conjunction with the Institut Pasteur, Paris, France
(1) A. Chenal, C. Vendrely, H. Vitrac, J.C. Karst, A. Gonneaud, C.E. Blanchet, S., Pichard, E. Garcia, B. Salin, P. Catty, D. Gillet, N. Hussy, C. Marquette, C. Almunia, and V. Forge, J. Mol. Biol. 415, 584–599 (2012).
(2) J.C. Karst, A.C. Sotomayor-Pérez D. Ladant, and A. Chenal, Methods Mol. Biol. 896, 163–77 (2012).
Malvern Instruments Ltd.
Enigma Business Park, Groveland Road, Malvern, UK
Tel: +44 (0) 1684 892456 E-mail: salesinfo@malvern.com
Website: www.malvern.com
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Profiling Volatile Organic Compounds in Whisky with GC×GC–MS
November 1st 2024Researchers from Austria, Greece, and Italy conducted a study to analyze volatile organic compounds (VOCs) present in Irish and Scotch whiskys using solid-phase microextraction (SPME) Arrow with comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC–MS) to examine the organoleptic characteristics that influence the taste of spirits.
GC–TOF-MS Finds 250 Volatile Compounds in E-Cigarette Liquids
November 1st 2024A study has used gas chromatography coupled to a time-of-flight mass spectrometer to build an electron ionization mass spectra database of more than 250 chemicals classified as either volatile or semi-volatile compounds. An additional, confirmatory layer of liquid chromatography–mass spectrometry analysis was subsequently performed.