A cell cycle clock consisting of four continuous stages governs cell division (and replication), with each stage controlled by a specific series of protein complexes. Cancer is characterized by the uncontrolled division of cells that have gained genetic mutations that allow them to overcome these controls, therefore resulting in their self-sufficiency.
A cell cycle clock consisting of four continuous stages governs celldivision (and replication), with each stage controlled by a specific seriesof protein complexes. Cancer is characterized by the uncontrolleddivision of cells that have gained genetic mutations that allow them toovercome these controls, therefore resulting in their self-sufficiency.
Scientists from Virginia Polytechnic Institute and State University(Virginia, USA) took a snapshot of a key transition point, the G1/S phase,in the breast cancer cell cycle by performing LC–MS–MS proteomeanalysis on nuclear and cytoplasmic cell fractions. The group positivelyidentified >2700 proteins from the analysis. Subsequent pathwaymapping, functional annotation clustering, and protein interactionnetwork analysis indicated that top scoring protein clusters could have arole in overriding the check-point.
Corresponding author Iuliana Lazar told The Column that at the proteomic level, the data reveals for the first time new relationships between different protein networks that have an essential role in variousbiological processes such as trancription activation and repression,signalling, and cell-cycle control.
Lazar added: “By providing novel insights into the functionalcategories that drive cancer cells into division, the data points to a broadrange of potential therapeutic targets that concurrently affect the cellcycle signalling and transcriptional/translational machinery.”
Reference
1. M.J. Tenga and Iuliana M. Lazar, Proteomics13(1), 48–60 (2013).
This story originally appeared in The Column. Click here to view that issue.
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.