A new candidate biomarker of sugar and sugar-sweetened beverage (SSB) intake has been proposed in a recent study published in the Journal of Nutrition.1 The study presents the carbon isotope ratio of alanine as a new biomarker for use in studies monitoring dietary sugar intake
A new candidate biomarker of sugar and sugar-sweetened beverage (SSB) intake has been proposed in a recent study published in the Journal of Nutrition.1 The study presents the carbon isotope ratio of alanine as a new biomarker for use in studies monitoring dietary sugar intake.
Scientific studies following the dietary intake of sugar are often dependent on questionnaires, interviews, or self-reporting of patients; however, it has been shown that most patients find it difficult to maintain accurate records. Corresponding author of the study, Diane O’Brian, said that this is specifically true for sugar intake, as research has demonstrated. Valid biomarkers can improve accuracy of diet studies, further improving the understanding of links between diet and diseases — specifically, studies attempting to determine the contribution of sugar intake to obesity and chronic disease risk.
In the US, 75% of dietary sugar originates from sugar cane and corn that are naturally enriched by the heavy stable isotope of carbon, 13C. The team sought to identify whether a correlation existed between the levels of13C ingested and the ratio of δ13Calanine in essential amino acids.
Urine assays to assess levels of sucrose and fructose have been validated, but repeated collections and day-to-day variability are limiting. The authors suggest that a biomarker that could be measured within single hair and blood samples would be an ideal addition to clinical studies.
The scientists recruited 68 participants from two coastal Yup’ik communities in Southwest Alaska to take part in the study. Blood and hair samples were collected and analysed by gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS) to determine associations between ¬13 C in essential amino acids and sugar intake. δ13Calanine was found to be strongly associated.
O’Brian told The Column: “We measured the carbon isotope ratio in alanine, an amino acid that has a close metabolic link to glucose. Glucose derives from dietary starches and sugars — the greater the intake of corn and cane-based sugars, the higher the carbon isotope ratio of glucose.” She added: “Alanine essentially captures a longer-term record of the isotope ratio of glucose, that can be measured in the proteins abundant in blood and hair.”
Reference
1. K. Choy et al., Journal of Nutrition143, 878–884,DOI: 10.3945/jn.112.172999 (2013).
This story originally appeared in The Column. Click here to view that issue.
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.