The majority of the human brain is not yet fully understood and we still have a lot to learn about its workings. A group of scientists have performed a comprehensive first characterization of the human occipital lobe (primary visual cortex) and cerebellum proteomes from 12 post-mortem samples.
The majority of the human brain is not yet fully understood and we still have a lot to learn about its workings. A group of scientists have performed a comprehensive first characterization of the human occipital lobe (primary visual cortex) and cerebellum proteomes from 12 post-mortem samples.1 Proteins were identified using gel electrophoresis combined with data-independent nanoflow liquid chromatography mass spectrometry (nLC–MSE). The resulting data sets comprised 391 and 330 unique proteins in occipital lobe and cerebellum, respectively, present in at least 75% of the analysed samples with 297 proteins found in common. The majority of these proteins have been identified with cellular and neuronal functions and subsequently with conditions, such as neurological disorder, progressive motor neuropathy, Parkinson’s disease and schizophrenia.
Of most note was the discovery of growth hormone and several examples of Ca2+ dependent calmodulin kinase and serine/threonine protein phosphatase in the occipital lobe. This raises the possibility that growth hormone could potentially play a part in visual processing. More research needs to be performed to identify whether these brain proteomes could help in the clarification of neurological processes and pinpoint potential targets for therapeutic strategies.
1. S. Bahn et al., Proteomics, 12(3), 500–504 (2012).
This story originally appeared in The Column. Click here to view that issue.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.