The majority of the human brain is not yet fully understood and we still have a lot to learn about its workings. A group of scientists have performed a comprehensive first characterization of the human occipital lobe (primary visual cortex) and cerebellum proteomes from 12 post-mortem samples.
The majority of the human brain is not yet fully understood and we still have a lot to learn about its workings. A group of scientists have performed a comprehensive first characterization of the human occipital lobe (primary visual cortex) and cerebellum proteomes from 12 post-mortem samples.1 Proteins were identified using gel electrophoresis combined with data-independent nanoflow liquid chromatography mass spectrometry (nLC–MSE). The resulting data sets comprised 391 and 330 unique proteins in occipital lobe and cerebellum, respectively, present in at least 75% of the analysed samples with 297 proteins found in common. The majority of these proteins have been identified with cellular and neuronal functions and subsequently with conditions, such as neurological disorder, progressive motor neuropathy, Parkinson’s disease and schizophrenia.
Of most note was the discovery of growth hormone and several examples of Ca2+ dependent calmodulin kinase and serine/threonine protein phosphatase in the occipital lobe. This raises the possibility that growth hormone could potentially play a part in visual processing. More research needs to be performed to identify whether these brain proteomes could help in the clarification of neurological processes and pinpoint potential targets for therapeutic strategies.
1. S. Bahn et al., Proteomics, 12(3), 500–504 (2012).
This story originally appeared in The Column. Click here to view that issue.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.