Researchers have developed a viable alternative to existing gas chromatography (GC) methods for glycerol determination in biodiesel using solid-phase extraction and high-performance liquid chromatography with a refractive index detector (SPE–HPLC-RI) (1).
Derived from the oils and fats of plants or animals, biodiesel is one of many alternatives to crude oil fuel sources. Considered a drop-in biofuel as it is compatible with existing diesel engines and distribution infrastructure, it is usually blended with petrodiesel, with 60 countries around the world mandating its addition. Countries such as the USA, Brazil, China, and Thailand all require petrodiesel to be blended with biodiesel in varying proportions, quite often hovering around the 10% biodiesel to 90% petrodiesel mark (2).
While biodiesel is compatible with modern diesel engines, the sole use of biodiesel as a fuel source is not possible without engine modifications, and in fact biodiesel contains a substance that can cause problems in car engines and in storage infrastructure (1). Glycerol, a co-product of the transesterification of oils and fats, needs to be monitored when blended with traditional petrodiesel. This is because during the blending process high concentrations of glycerol can separate out in the storage tanks. Furthermore, issues such as deposit formation, clogging of fuel injectors, and the production of harmful combustion products, such as aldehydes, are also related to high glycerol concentrations in biodiesel (3).
Currently a technique using GC monitors glycerol concentrations; however, this technique was developed for biodiesels made from canola oil and is not necessarily adequate for biodiesels made from other oils and fats. For example, in Brazil, around 70% of biodiesel is made from soybean oil, with the remaining 30% coming from animal tallow. Analysis with the current standard technique can often yield overlapping peaks, making analysis of biodiesel quality difficult. The great diversity of raw material used for biodiesel production presents many challenges for analytical chemists. Rising to that challenge, researchers aimed to develop a new method to detect and quantify glyercol in biodiesel using SPE and HPLC using a refractive index detector.
The resulting method proved capable of accurately quantifying glycerol in biodiesel samples made from raw materials containing different proportions of soybean oil and tallow. The new method offers a simple, quick, and effective method of determining free glycerol in biodiesel and a viable alternative to existing methods.
References
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.