In this excerpt from LCGC Europe’s e-learning platform, CHROMacademy.com, the advantages of supported liquid extraction (SLE) are discussed.
In this excerpt from LCGC Europe’s e-learning platform, CHROMacademy.com, the advantages of supported liquid extraction (SLE) are discussed.
Although traditional liquid–liquid extraction (LLE) is very widely used, it has a number of fundamental disadvantages. Large amounts of solvents may be consumed; flask shaking can be highly labour intensive and somewhat subjective, and the glassware used needs to be thoroughly cleaned. There is a risk of emulsion formation that can be difficult to deal with. The process is typically run in serial, as opposed to in parallel, which limits throughput, and the traditional shakeâflask methods are not amenable to automation.
Supported liquid extraction (SLE) is an analogue of the traditional LLE approach, which uses the same extraction principle of partitioning of target analytes between two immiscible phases, but in the SLE technique the aqueous phase is coated onto a high surface area material (typically diatomaceous earth) held within tubes, cartridges, or plates similar to those used in solid-phase extraction (SPE). The extraction solvent is passed through the cartridge, and a very highly efficient extraction occurs via partitioning of the target analytes between the immobilized aqueous and slowly moving organic phases.
In the first stage of the SLE process, the aqueous sample is introduced into the high-surface-area sorbent and is allowed to penetrate the material through capillary action and surface adsorption, typically over a period of 5–10 min.
It is possible, as with conventional LLE methods, to adjust the pH of the aqueous sample or its ionic strength to promote the efficient partitioning of the analyte into the organic phase. Indeed, some SLE materials are available in prebuffered form, which will adjust the aqueous sample pH as it is added to the sorbent.
Next a small volume of organic solvent, or mixture of organic solvents, is added to the sorbent and allowed to percolate through the sorbent under gravity. More viscous samples can be drawn through the sorbent with a gentle vacuum. Because of the very high surface area of the sorbent material, the organic solvent has intimate contact with the thin layer of absorbed aqueous sample containing the analytes, and a very highly efficient extraction takes place. In LLE, the extraction efficiency is derived from the formation of tiny droplets of organic solvent that are formed during vigorous shaking, thus increasing the surface area of the extracting media. However, this process may also lead to the formation of an emulsion, which is difficult to disperse. SLE techniques do not suffer from the disadvantages of emulsion formation because no shaking is involved.
The final stage in the SLE process is to collect the organic eluate from the cartridge as the aqueous phase remains adsorbed to the sorbent surface. Most devices will also contain phase separation media within the outlet frit to avoid any breakthrough of aqueous sample into the final organic eluate.
The volume of sorbent and cartridges used will be determined by the concentration of the analyte, the volume of sample available, and the sensitivity of the analytical technique being used for the determination. Typically a 1:1 ratio of sorbent mass to sample volume is used to determine the mass of sorbent used according to the aqueous sample volume. For example, the use of SLE in bioanalytical experiments using high performance liquid chromatography (HPLC) with tripleâquadrupole mass spectrometry (MS) detection, the use of 2-mL well plates containing 200 mg of sorbent might be used to extract 200 µL of plasma sample.
The solvent extraction efficiency is typically optimized when two to four times the volume of organic extraction solvent is used compared to the aqueous sample volume, and these volumes may be applied in discrete aliquots. So, two to four 200-µL aliquots of extraction solvent may be used in the plasma extraction described above.
Mixed organic solvents may also be used to maximize extraction recovery, with the proviso that the organic and aqueous solvents remain immiscible.
It is further advisable to use higher quality organic solvents (spectroscopic grade or better) to avoid the concentration of any solvent impurities during the eluate preconcentration (evaporation to dryness and reconstitution) stages.
Because SLE hardware is typically available in cartridge and plate formats, it is also highly amenable to parallel automation, thus vastly improving the throughput of the sample extraction technique.
Find this, and other webcasts, at www.CHROMacademy.com/Essentials (free until 20 September).
GC–TOF-MS Finds 250 Volatile Compounds in E-Cigarette Liquids
November 1st 2024A study has used gas chromatography coupled to a time-of-flight mass spectrometer to build an electron ionization mass spectra database of more than 250 chemicals classified as either volatile or semi-volatile compounds. An additional, confirmatory layer of liquid chromatography–mass spectrometry analysis was subsequently performed.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Multivariate Design of Experiments for Gas Chromatographic Analysis
November 1st 2024Recent advances in green chemistry have made multivariate experimental design popular in sample preparation development. This approach helps reduce the number of measurements and data for evaluation and can be useful for method development in gas chromatography.