Ion Mobility–Mass Spectrometry for Food Analysis: An Update
October 1st 2019In food analysis, many different biological matrices are investigated containing numerous compounds that can interfere with liquid chromatographyÐmass spectrometry (LC–MS) analysis. To overcome the challenges that arise with these highly complex matrices, the additional separation of analytes and matrix compounds complementing chromatographic separation is becoming more significant. In this article, the potential of IM-MS to increase selectivity and for additional identity confirmation is investigated. An extensive evaluation of IM-MS instruments was performed on a broad test set of food safety contaminants. The tested IM-MS platforms were DMS, TWIMS, low field DTIMS, and TIMS. CCS data were determined using the different instruments, and the ability to separate isomers and compounds of interest from sample matrix in the IM dimension was explored.
This article describes open access sofware for the modelling and prediction of retention times in gas and liquid chromatography. This software provides useful results for food analysis.
A Multi-Analyte LC–ESI-MS/MS Method to Analyze BPA, BADGE, and Related Analytes
October 1st 2019LCGC Europe interviewed Stefan van Leeuwen from Wageningen Food Safety Research (WFSR), in Wageningen, The Netherlands, on his novel multi-analyte approach to investigate bisphenol A (BPA), bisphenol A diglycidyl ether (BADGE), and their analogues using liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS).
Categorizing Olive Oil Using Untargeted GC–MS with a Multivariate Statistical Approach
October 1st 2019Carlos Sales and Joaquin Beltrán from The Research Institute for Pesticides and Water at the University Jaume I, in Castellón, Spain, discuss a novel untargeted gas chromatography–mass spectrometry (GC–MS) method, incorporating dynamic headspace (DHS) with thermal desorption and a novel deconvolution approach, to classify olive oil.