Reliable and Efficient Sulfur Detection in Proteins Using ICP-MS with Capillary LC
October 1st 2010With recent research, the University of Oviedo's analytical spectrometry research group has taken a step closer to the absolute quantification of proteins. Quantification based upon isotope dilution mass spectrometry of sulfur is hampered by gas-based polyatomic interferences. By implementing a quadrupole inductively coupled mass spectrometer with collision/reaction cell technology, the group has been able to overcome the issues and has increased reliability while optimizing the efficiency of its analyses.
Increasing Productivity of ADME Studies Using Accurate Mass Technology
October 1st 2010A new time-of-flight mass spectrometer was evaluated for performing simultaneous metabolic stability measurement and metabolite identification with ultrahigh-pressure liquid chromatography. Six representative compounds (clomipramine, diclofenac, imipramine, haloperidol, verapamil, and midazolam) were incubated in rat liver microsomes at a more physiologically relevant substrate concentration (1 ?M). High-resolution full-scan and product-ion spectra were acquired in a single injection using generic methodology. Quantitative clearance of the parent was measured using the full-scan data. Major metabolites were identified using the accurate mass product ion spectra. High scanning speed allowed for a sufficient number of data points to be collected across the chromatographic peak for quantitative analysis. Sensitivity was sufficient for obtaining meaningful kinetics with a 1 ?M initial substrate concentration.
Dried Blood Spots and High-Resolution Mass Spectrometry for Discovery Fast PK Bioanalysis
October 1st 2010This article introduces the advantages of accurate mass high-resolution mass spectrometry LC–MS (HRMS) coupled to the dried blood spot (DBS) technique for fast PK applications in a discovery environment. Compared with the established norm of plasma bioanalysis using triple quadrupoles, HRMS coupled to DBS is a viable alternative. The benefit is access to critical new information (HRMS bioanalysis) and significantly less stress on the animal (DBS), both factors that potentially improve the quality of early PK data.
Meeting the Surge in Demand for Seafood Screening on the Gulf Coast
October 1st 2010The threat to human health posed by the recent oil spill has created a pressing need for high-throughput seafood analysis to ensure that it does not contain dangerous levels of polycyclic aromatic hydrocarbons (PAHs) and to allow the earliest possible reopening of the fisheries. Adapting QuEChERS sample preparation technology to this application, combined with the use of preconfigured PAH gas chromatography–mass spectrometry analysis systems, can provide the ability to process in a timely manner the enormous number of samples that will be generated by the ongoing testing program.
Development of a High-Throughput LC–MS Assay for Drugs of Abuse from Biological Matrices
October 1st 2010A high-throughput LC–MS method using core-shell UHPLC columns to screen for a panel of 11 drugs of abuse (expanded SAMHSA) was developed. The corresponding SPE method allowed the reproducible separation and quantitation of these 11 components in less than 2 min. This method demonstrates the power of new-generation HPLC media as well as some of the factors one must consider when developing such methods for LC–MS analysis.
Using Novel TOF-MS to Increase Sensitivity and Confidently Detect Drugs of Abuse in Urine
October 1st 2010The analysis of urine for drugs of abuse via chromatographic methods is commonplace but can be complicated by high matrix effects and frequent coelution. Novel time-of-flight mass spectrometry in combination with sophisticated deconvolution software was tested and found to provide increased confidence in results due to the high sensitivity and quality of spectra achieved.