LC Column Problems Everywhere 1
September 1st 2015I recently returned from a tour of teaching liquid chromatography (LC) classes to users in Minnesota, the United Kingdom, Poland, and Malta. One thing that always impresses me on such trips is that no one group has a corner on the LC problem market. The same problems pop up in most laboratories, no matter where they are located, the role of the laboratory (for example, analytical, forensic, production, research), what industry is involved, or the brands of instrumentation used.
Sigmoidal Gradients in the HPLC-Based Analysis of Biotherapeutic Products
September 1st 2015A systematic approach for formation of sigmoidal gradient for analysis of biopharmaceutical proteins has been reviewed and discussed together with two case studies. The first application involves HPLC separation of the various product related variants of a microbial expressed biotherapeutic, granulocyte colony stimulating factor (GCSF). The second case study involves separation of the charge heterogeneity related variants for a monoclonal antibody (mAb) biotherapeutic product. In all cases, it is observed that the use of sigmoidal gradient successfully reduces the analysis time significantly (from 70 minutes to 15 minutes for GCSF and from 40 minutes to 4 minutes for the mAb) while retaining the selectivity and the resolution.
Ion-Mobility Mass Spectrometry in Metabolomics and Lipidomics
September 1st 2015Ion-mobility spectrometry (IMS) is an anlytical technique that provides for the separation of ions in the gas phase. The separation, occuring on a timescale of milliseconds, is based on the differing mobility of ions according to their charge, shape, and size. These characteristics make IMS suitable for coupling with mass spectrometry (MS), to serve in current MS-based workflows for metabolomics and lipidomics. IM-MS improves peak capacity and signal-to-noise ratios, and it provides more confidence during compound identification or confirmation than conventional analyses. Combining collision-induced dissociation with ion-mobility separation improves the specificity of MS/MS-based approaches. Significantly, ion-mobility-derived information provides an orthogonal, physicochemical parameter-the collision cross section (CCS)-which relates to a metabolite's shape. Novel hardware and software solutions enable analysts to process and exploit IMS-MS data for qualitative and quantitative metabolomics and lipidomics applications.
Highlights from the HPLC 2015 Symposium
September 1st 2015HPLC 2015, chaired by Gérard Hopfgartner was held in Geneva, Switzerland, from June 21–25. This installment covers some of the highlights observed at the symposium including stationary phase developments, particle technology, and areas of growing application of HPLC. In addition, trends and perspectives on future developments in HPLC culled from the conference are presented.