Professor Wolfgang Lindner spoke to Kevin A. Schug about his inspiring and influential career in chromatography.
Professor Wolfgang Lindner spoke to Kevin A. Schug about his inspiring and influential career in chromatography.
Kevin A. Schug: When did you first discover chromatography and why did you remain in this field?
Wolfgang Lindner: Between 1969 and 1972, I carried out my PhD research in chemistry at the Institute of Organic Chemistry, University of Graz, Austria. It had an interdisciplinary focus bridging organic chemistry with analytics, with gas chromatography (GC) the method of choice.
The PhD work dealt with the synthesis of highly reactive small molecules such as ketene and carbonsuboxide, and followed the reaction kinetics with other molecules. These reactive species and the products of pyrolysis reactions could be produced in the injection block of the GC system. Finally, the analytical part dealt with their identification in cigarette smoke using GC and GC coupled to mass spectrometry (MS).
I became fascinated by the power of chromatography and the possibility of monitoring the reaction kinetics of highly reactive compounds and identifying them in very complex samples like cigarette smoke. The project actually also dealt with the performance of cigarette filters.
KAS: Which separations scientists have inspired you most and why?
WL: In the late 1960s, although at that time still working mainly with packed GC columns and the beginning of capillary columns (glass and steel), GC had matured to a high level. I soon realized during my PhD work the diverse limitations of GC and the great potential of liquid chromatography (LC). For GC, it was my supervisor Prof. Heinz Binder (Graz) and Prof. Conny Grob from ETH Zurich who inspired me most. In LC, it was the late Prof. J.F.K Huber who inspired me during a GDCh course on high performance liquid chromatography (HPLC) which I took part in 1973 in Essen (Germany).
After I completed my PhD in chemistry in 1972 I moved to the Institute of Pharmaceutical Chemistry in Graz where I ordered one of the first HPLC instruments from Hewlett Packard (who bought Hupe and Bush) in 1973.
For many years I worked in parallel with GC (and even preparative GC) and LC, so I grew up in both worlds. It was later that HPLC became my main passion when I realized the enormous potential of liquid phase separation science because of the "selectivity" options driven by the great variability of the mobile phase and stationary phase characteristics. In essence LC pinpoints the more chemistry-oriented part of separation sciences, aside from the more physico-chemistry related fundamentals describing the separation process.
In 1973 I made my first stagier at Sandoz (now Novartis) in Basel in the late Prof. Roland Frei's department. This personal contact and friendship was highly influential to me and my further career in academia.
During that time I also met Fritz Erni. We have been good friends ever since then, sharing for over 40 years the rapid and continuous success of HPLC as a technology with enormous impact in natural sciences. Again, it was the almost unlimited potential of HPLC in the field of pharmaceutical sciences that fascinated me. We were able to solve analytical problems that had not been feasible to approach before.
In 1977 I participated for the first time in an HPLC meeting chaired by Joseph Huber that took place in Salzburg, Austria. There I met a lot of the gurus of HPLC — including Barry Karger, Jack Kirkland, John Knox, Georges Guiochon, Csaba Horvath, Cal Giddings, Istvan Halasz — as they presented their latest research results and enthusiastically discussed scientific arguments.
One late night while at the bar of the conference hotel I decided to ask Prof. Karger if he would accept me as a post-doc in his laboratory in Boston. This idea was seconded by my two mentors Roland Frei (Basel, Switzerland) and Göran Schill (Uppsala, Sweden). Barry Karger agreed and in 1978–79 I stayed in Boston with my family. It was a fantastic year for all of us and the start of my career as an HPLC specialist and the beginning of a life-long friendship with Barry.
In Boston and still at the beginning of my academic career, I started to work in the challenging field of chromatographic enantiomer separations, both in theory and in practice. My background in organic chemistry helped me significantly to dig deeper and to develop novel enantioselective chiral stationary phases. At the same time I worked with other stereoselective separation methods and approached the field as broadly as possible. Trying to understand the underlying stereoselective molecular recognition principles in all its various facets has marked my academic life up until the present day. Along the way I was able to file several patents, and some of the developments were licensed and led to commercialized products. It is an interesting way of being rewarded and having your work recognized — a good feeling.
KAS: What do you regard as your biggest breakthrough in your research career? And your biggest mistake?
WL: On the question "which was my biggest mistake" I have no answer as in chemistry we all have to make many "mistakes" along the way of making a "break through". Actually I am satisfied with my way of life, both in business and personally; ups and downs have to be faced everywhere and need to be overcome. Those who learn to deal with them and who learn quickly from the downs will be on the winning side at the end of the road.
KAS: You have worked in both industry and academic laboratories. What are the pros and cons of each?
WL: In academia, the challenges are certainly different than in industry, where the achievements of the pre-set goals, the deadlines, and the productivity (results per time unit) count the most. In academia my goal was always to maintain a high level of research and education and to stimulate research as part of the education programme.
Students need to find their individual limits and to learn to deal with them; once they have learnt to handle them in the course of a PhD project they become "fit for the business life". On this basis I have had fantastic teams of students and co-workers over the years, and I am in contact with most of them — even my first PhD students who finished in 1977! The research and the personal touch does not make it an easy-going lifestyle but at the end it is highly rewarding.
The academia career was the right choice for me because of the enormous amount of freedom to follow research-driven ideas. This is risky because one can easily get lost, with the result that projects don't always get finished! But on the other hand, moments of inspiration can be followed, which would not be possible in industry.
To be successful in academia, which is nowadays judged by the number of publications, the number of patents, the amount of money raised via research grants, and the number of PhD students you assisted, requires the personality of an "entrepreneur". One needs to be self-driven and constantly dedicated. It is not so very different to the founder of a start-up company, the only fundamental difference is that if you fail in academia you may not face unemployment so quickly and you can more easily argue that the university did not provide you with the adequate financial support and research environment. In all honesty, this reflects the old days of academia as an academic career is now at least as tough as working in industry, as the fight for research money has become very challenging. Not to mention the demands on flexibility in all aspects has become even more pressing.
KAS: You were part of the Christian Doppler Laboratory for Molecular Recognition Materials in the Department of Analytical Chemistry and Food Chemistry at the University of Vienna. Can you tell us the origination of this centre?
WL: In order to bridge the academically funded research, I also had to involve myself in industry-related research and development and therefore follow the concept of innovation
It was actually not too difficult for me to find industry partners during my university career. In this context I was able to found inter alia with my co-worker Michael Lämmerhofer (now at the University of Tübingen, Germany) the Christian Doppler Laboratory for Molecular Recognition Materials, based within the University of Vienna.
Over 7 years financial support came from European industry partners and from the Ministry of Economics of Austria; and it was a very successful model of applied research funds established in Austria and led by the Christian-Doppler-Society (CDG).
KAS: What areas of separation science are you focusing on at the moment?
WL: Over the years I have been active mainly in the areas of GC, LC, capillary electrophoresis (CE), and capillary electrochromatography (CEC), but we also used separation technologies with membranes and crystallization concepts. Hyphenation of GC and LC with mass spectrometry (MS) has become a standard tool over the past 20 years.
We worked on the separation and analysis of small molecules, but also on large ones such as proteins and antibodies. For all these fields we developed dedicated separation materials (stationary phases) and methods. We even tackled the analysis of very large molecules with molecular masses over 1 MDa, such as DNA-type analytes.
These results contributed to one of the highlights of our research and was recognized even by biochemists; it documents the potential of working on the interface of different fields and the impact of separation sciences. The development of various novel chiral stationary phases to separate stereoisomers belongs to our core activities. In this context, the chiral ion exchange type materials are widely known as so-called "Lindner phases". Of course, dedicated sample preparation concepts, including the use of gold nanoparticles, needed to be integrated into our strategies as part of the total analysis.
Central to all our work has been the involvement of organic chemistry — whether it was for the dedicated synthesis of chiral selectors, or for the development of derivatization (tagging) concepts of analytes to improve their detectability by MS, including their fragmentation profile in MS, or improving the chromatographic selectivity profile of the analytes in question. This can be summarized with the credo of molecular recognition concepts in separation sciences and with the development of separation materials where such principles are in force.
In a way this focus has been with me all my life and it is based on my passion for organic chemistry. Every compound has a unique physico-chemical property (size, polarity, shape, functional groups, etc.). These unique characteristics and the fact that when a compound comes into contact with a molecular partner, as for example the solvents of the mobile phases and/or the ligands of stationary phases, is the basis for the almost unlimited selectivity space and its tuning in liquid phase separation techniques.
KAS: Is there an area of separation science you would like to have been involved but didn't have the chance (or funding!) to do? What areas of separation science do you think are exciting outside your area of expertise?
WL: I would have loved to work more with MS techniques, both in theory and in practice; this includes their use as fast separation tools. Modern ion mobility MS in particular has interested me. The underlying fragmentation pattern in MS relates directly to selectivity issues based on the compound's property. It is particularly visible in the various "omics" type research fields where hyphenated LC–MS technologies are the gold standard. Good analytical data are the basis for good science. Understanding of the analytical question, of the analytes, of the matrices, of the separation systems, and of the detection technology are in summary the demands on the qualified analytical chemist.
KAS: How do you see chromatography evolving and what are its limits?
WL: Chromatography has developed to a core technology in analytical sciences, in "omics" related biosciences, in food chemistry, environmental chemistry, and forensic chemistry. It is also important in purification sciences, whether it deals with biomolecules or with natural products or synthetic compounds. Preparative chromatography from the mg to the multi-ton range became indispensable in an industrial environment. The trend towards miniaturization and capillary technology will remain; it is not the chromatographic technology that is challenging per se, it is more the engineering aspect. Very small volumes and highly sensitive detection systems with (ultra)high pressure are challenges to be mastered.
To a certain degree, supercritical fluid chromatography (SFC) will re-evolve, at least for the platforms of compound purification scenarios.
I don't see clear limits for LC. Its fundamental advantage relates to the chemical selectivity tuning based on the inherently occurring intermolecular interaction principles between selectands (analytes) and selectors (ligands) of stationary phase and of an adsorption material, respectively. Partition type chromatography will remain, with the potential for further advancements.
KAS: What major challenges should the younger generation of scientists work on?
WL: This question cannot be answered very easily. Just to pick out one aspect though, there are clear challenges in bioscience analytics and attempting to emulate the biological world with the underlying chemical world, which will be tightly connected to technological and methodological advances of the analytical sciences. To de-convolute the chemical complexity of biological systems is a striking challenge. This includes medicinal chemistry, where in essence diagnosis is an analytical tool. To generate unbiased analysis data of biomarkers and disease markers is strongly connected to the establishment of laboratories with a high level of analytical competence.
In industry a high demand for well educated chromatographers will remain. They should be able to play the keyboard of methodologies to adequately tackle the analytical questions being raised.
KAS: What advice do you have for aspiring chromatographers?
WL: Chromatographers and analytical chemists should be more confident of the key role they fulfil not just in industry but also in (bio)chemistry- and medicinal chemistry-oriented sciences. If the analytical data are not valid, the projects will suffer substantially. Analytical scientists should be considered as equal partners in a team and should not be seen only as service units.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.