A recent study published in the Journal of Separation Science reveals how ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS) could be used to detect and quantify purine metabolites (1). This study revealed new information about the relationship between purine metabolites and their involvement in several biological disorders such as hyperuricemia and kidney stones.
Purine metabolites play pivotal roles in cellular processes and energy metabolism. Understanding their levels and dynamics in biological systems is crucial for deciphering the pathogenesis of purine metabolic disorders. In response to this need, the researchers developed an UHPLC–MS/MS method that allows for the comprehensive quantification of 17 purine metabolites in rat plasma.
One of the features of this UHPLC–MS/MS method was its efficiency. In approximately 15 min, the method was able to separate and quantify all 17 purine metabolites, providing researchers with a panoramic view of purine metabolism in biological samples (1). The method’s accuracy and precision
were extensively validated, with linear relationships (R2 ≥ 0.9944), recoveries ranging from 85.3% to 103.0%, and low relative standard deviation values (≤9.3%) for all analytes (1). The researchers tested the method by applying it in the study of acute gouty arthritis rats, as well as rats treated with anthocyanin and colchicine. The findings revealed that among the purine metabolites, uric acid, xanthine, hypoxanthine, and xanthosine emerged as key factors associated with acute gouty arthritis. These findings offer valuable insights into the mechanisms underlying this painful condition, potentially paving the way for more effective treatments and preventive measures (1).
(1) Jia, Q.; Yang, Z.; Wang, Q.; et al. A Liquid Chromatography-Tandem Mass Spectrometry Method for
Comprehensive Determination of Metabolites in the Purine Pathway of Rat Plasma and its Application in Anti-Gout
Effects of Lycium Ruthenicum Murr. J. Sep. Sci. 2023, e2300090. DOI: 10.1002/jssc.202300090
LCGC’s Year in Review: Highlights in Liquid Chromatography
December 20th 2024This collection of technical articles, interviews, and news pieces delves into the latest innovations in LC methods, including advance in high performance liquid chromatography (HPLC), ultrahigh-pressure liquid chromatography (UHPLC), liquid chromatography–mass spectrometry (LC–MS), and multidimensional LC.
Next Generation Peak Fitting for Separations
December 11th 2024Separation scientists frequently encounter critical pairs that are difficult to separate in a complex mixture. To save time and expensive solvents, an effective alternative to conventional screening protocols or mathematical peak width reduction is called iterative curve fitting.
Mobile Phase Buffers in Liquid Chromatography: A Review of Essential Ideas
December 11th 2024In this installment of "LC Troubleshooting," Dwight Stoll discusses several essential principles related to when and why buffers are important, as well as practical factors, such as commonly used buffering agents, that are recommended for use with different types of detectors.