New research into flow modulation methods in valve-based two-dimensional gas chromatography (GC×GC) has produced an effective alternative to traditional pulse modulation.1 Described as “pattern modulation”, this new method increases effluent to the secondary column with flow rates compatible with most chromatographs and spectrometers.
Photo Credit: John Lund/Getty Images
New research into flow modulation methods in valve-based two-dimensional gas chromatography (GC×GC) has produced an effective alternative to traditional pulse modulation.1 Described as “pattern modulation”, this new method increases effluent to the secondary column with flow rates compatible with most chromatographs and spectrometers.
Researcher John Seeley from Oakland University in Rochester, Michigan, USA, said the new approach is easy to implement with existing instrumentation. “Pattern modulation can be produced with the exact same valve-based hardware used to conduct conventional pulse modulation separations”, he said, “and requires only simple software commands”.
Standard gas chromatographs require a modulator to produce comprehensive separations. These modulators convert effluent peaks emerging from the primary column into a series of sharp pulses injected into the secondary column. However, pulse generation with valve-based modulation requires a large increase in secondary column flow rate or only a small amount of primary effluent being transferred to the secondary column.
Today, most GC×GC separations are performed with thermal modulation, but that is an expensive approach. As Seeley commented, “When cost is not a factor thermal modulation will provide the best performance. But when resources are tight, valve-based modulation in all of its forms can be an extremely effective tool for generating high–resolution separations.”
Unlike pulse modulation, where narrow pulses are injected, pattern modulation uses an intricate injection pattern. This approach allows the majority of the primary effluent to reach the secondary column. However, the detector signal generated from this process must be transformed to extract a conventional pulsed signal. This is key to the analysis.
Initial results using pattern modulation were incredibly positive, but the research recognizes that there is a point where the complexity of the sample can overwhelm the signal transformation process. At this point, traditional pulse modulation is preferred.
Currently, Seeley and his team are trying to establish quantitatively when pattern modulation is superior to pulse modulation. He said, “We want to be able to recognize when pattern modulation is the best alternative for producing valve-based GC×GC separations”. - L.B.
Reference
J.V. Seeley and S.K. Seeley, J. Chrom. A1421, 114–122 (2015).
Pittcon 2025: Xiao Su Discusses His Work in Electrochemical Separations
March 13th 2025In this video interview with Xiao Su, he dives deeper into the research that he and his team are conducting with redox-active polymers and the applicability of electrochemical approaches in separation science.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Pittcon 2025: Kate Perrault Uptmor Talks About Multidimensional GC and Mentorship
March 13th 2025In our interview with Kate Perrault Uptmor, we asked her about the resources available for those interested in learning more about multidimensional chromatography, and current trends happening in separation science that are of particular note.
Analyzing Effects of Adverse Cardiovascular Events on Chronic Kidney Disease with HPLC
March 13th 2025Researchers investigated the potential association between plasma apolipoprotein M (APOM) levels and the risk of adverse cardiovascular outcomes in individuals with chronic kidney disease (CKD). Plasma sphingosine-1-phosphate (S1P) levels were measured by high performance liquid chromatography (HPLC).