Researchers have developed a novel microfluidic chip for the study of extracellular vesicles (EVs) using miniaturized size-exclusion chromatography (SEC) (1).
EVs are an increasingly interesting target for potential diagnostic and therapeutic applications. Important in intercellular communication and containing information such as DNA, RNA, lipids, and proteins, these phospholipid bilayer vesicles are around 50–200 nm and can contain crucial information on cell origin and
disease status.
SEC is widely used for clinical EVs isolation (2) as it is simple to operate. However, there are certain challenges with integrating upstream sample pre‑processing and downstream analysis, resulting in a major bottleneck.
One possible solution to these issues has arisen in the form of microfluidic technologies, which have been used to directly isolate EVs from complex biofluids such as blood (1). These devices have been primarily focused on the analysis of smaller biomolecules, with larger
elements such as EVs remaining unexplored. Unfortunately, on-chip sample injection and a suitable chip material are two major stumbling blocks to fully realizing miniaturized SEC for use in EV research.
Researchers identified two possible solutions for the issues surrounding on-chip sample injection through the miniaturization of commercial rotary valve injectors (3,4) or microfluidic passive injectors using cross junction (5–7) or T-junction (8) channel designs—the former requiring costly components while the latter proving sensitive to small pressure changes at low flow rates.
As to the issues with chip materials, the researchers identified thiolene polymer (UV glue NOA81) as an attractive alternative to more established materials, such as polydimethylsiloxane (PDMS), despite its fabrication difficulties.
Utilizing this knowledge, researchers developed a novel fritless microfluidic SEC device (µSEC) using thiolene polymer for EVs isolation and protein separation. The chip uses a modified T-junction with a controlled on-chip nano-litre sample plug injection. The device was then validated using fluorescent nanoparticles (50 nm), albumin, and breast cancer cells (MCF‑7)‑derived EVs. As a proof‑of‑concept for clinical applications, EVs were directly isolated from undiluted human platelet-poor plasma using μSEC. To ensure there were distinct elution profiles between EVs and proteins, nanoparticle tracking analysis (NTA), Western blot, and flow cytometry analysis were carried out.
The researchers believe the optically transparent μSEC could be readily automated and integrated with EV detection assays for EVs manufacturing and clinical diagnostics.
References
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.