A novel flow-confinement concept designed to remove the performance sacrifice associated with current comprehensive two-dimensional liquid chromatography techniques has been tested by researchers.
Photo Credit:deomis/stock.adobe.com
A novel flow-confinement concept designed to remove the performance sacrifice associated with current comprehensive two-dimensional liquid chromatography techniques has been tested by researchers (1).
The characterization of highly complex samples is always a challenge, often requiring a comprehensive two-dimensional liquid chromatographic approach (LC×LC) to solve. However, the compromise made between the first and the second dimensions, specifically in the flow rates and the modulation time, often results in a reduction in performance. To avoid this reduction in performance, a perfectly operated spatial ×LC××LC system is required with rigorous confinement of the flow of the mobile phase and analytes in the desired direction.
A suitable format for spatial separations can be realized through microfluidics devices, which can be designed using computational fluid dynamics to create satisfactory designs that can be rapidly and easily prototyped using 3D-printing methods.
Using this process, researchers designed a novel flow-confinement method titled TWIST (two-dimensional insertable separation tool). The modular device has an internal first-dimension (1D) part that is cylindrical and rotatable. This internal part features a series of through-holes, each of which is perpendicular to the direction of the 1D flow. The internal part is inserted in the cylindrical casing of the external part, which also includes a flow distributor and second dimension (2D) channels. During injection the liquid remains confined within the 1D channel as the rotating piece flow positions the through-holes towards the wall of the external part. During transfer to the second dimension, the rotation of the internal part aligns the through-holes to the external part allowing transversal flow of the 2D mobile phase from the distributor and into the 2D area.
Despite the promise of the device, researchers cautioned that further research is required for device and material optimization, incorporation of stationary phases, and for the performance of actual separations. Furthermore, it is believed the device could be modified to realize flow confinement in spatial three-dimensional liquid chromatography.
Reference
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.