Researchers from The First Institute of Oceanography in Qingdao, China, have developed an exact mass suspect screening approach for identifying multiple lipophilic marine toxins in seawater, suspended particulate matter (SPM), and marine sediment using LC–TOF-MS.
Photo Credit: Sytillin Pavel/Shutterstock.com
Researchers from The First Institute of Oceanography in Qingdao, China, have developed an exact mass suspect screening approach for identifying multiple lipophilic marine toxins (LMTs) in seawater, suspended particulate matter (SPM), and marine sediment using liquid chromatography–time-of-flight mass spectrometry (LC–TOF-MS) (1).
In the recent decade, the frequency and intensity of algal bloom events has increased bringing environmental science to the forefront of the public consciousness once more. Contamination with marine toxins produced by planktonic and benthic microalgae has impacted communities across the world and led to dramatic consequences for public health. Algal blooms such as those which affected and continue to affect Lake Erie in North America-a lake which shores on five US states and Canada, where toxic algae contaminated the drinking water for more than 400,000 people in 2014-are pertinent examples of their potentially devastating impact (2).
Further to the public health concerns, algal blooms can also devastate marine life populations, including prominent markets such as those revolving around shellfish, leading to massive economic disruption. While substantial research has focused on the marine toxins in contaminated bivalves, little is known about the pollution levels of marine toxins in the aquaculture environments in which the shellfish and fish populations need to live.
Aiming to address this lack of knowledge researchers have developed an approach of target analysis and suspect screening to perform rapid identification of multiple LMTs in seawater, SPM, and marine sediment samples by LC coupled to high resolution (HR) MS, and applied this method to screen LMTs in marine environmental samples collected from Jiaozhou Bay in China.
The new method detailed in the journal Chemosphere successfully screened LMTs using LC–TOF-MS combined with an accurate molecular mass list. The method was verified to be precise, repeatable, practical, and was also successfully applied to screen and verify LMTs in seawater, SPM, and marine sediment samples.
References
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.