The Application Notebook
Scientists employ fused silica capillary tubing routinely in a wide range of analytical applications, encompassing GC, CE, capillary LC, and CEC. It has proven as an ideal substrate for interfacing in hyphenated techniques.
Synthetic fused silica capillary tubing continues to be a vital material in the separation sciences. In this application note, we present and discuss recent data on cutting edge, nanometer internal diameter capillary tubing.
Scientists employ fused silica capillary tubing routinely in a wide range of analytical applications, encompassing GC, CE, capillary LC, and CEC. It has proven as an ideal substrate for interfacing in hyphenated techniques. As the separation sciences and related analytical technologies evolve, a general trend toward smaller bore capillary tubing is clearly evident.
Polymicro Technologies™ capillary tubing leads the field in meeting this market demand by offering 25 standard products with internal diameters (i.d.) of less than 50 µm, with six of those having i.d. tolerances of ± 1 µm. The next logical innovation is the sub-1-µm regime. For many years it was felt that nanometer i.d. capillary, or "nano-capillary," could not be produced as the open bore of the capillary would close shut during the manufacturing process. After innovative developments, nano-capillary has been drawn several times in small quantities.
In this application note we discuss details of a 1 km-long experimental run of polyimide coated, fused silica-based nano-capillary.
Nano-capillary tubing used in this study was produced on a standard Polymicro Technologies drawing tower using proprietary, optimized draw parameters. The fused silica employed was the same glass type used for similar small i.d. capillary. The objective was to produce tubing of <1 µm, but specific nanometer level targeting was not possible due to the delay between production sampling and SEM verification. Individual samples were measured using a Hitachi S4500, using a NIST traceable standard from Geller MicroAnalytical Laboratory.
During the draw, individual batches of capillary were collected in pre-determined lengths of 100 m. Each batch was further segmented and end measurement samples taken every 25 m. The i.d. of each sample was then determined by SEM yielding 5 data points every 100 linear meters.
Figure 1: i.d. data for 100 m long batches from a 1 km draw of nano-capillary.
A chart of i.d. data collected from the 10 batches produced is shown in Figure 1. The i.d. target of <1 µm was met on all data points. The i.d. range within each 100 m long batch varied from a low of 40 nm to a high of 314 nm, with six of the batches having ranges of <125 nm. Table I shows a summary of the average i.d. by spool and the corresponding standard deviation. The i.d. initially trended downward from ~900 nm to nominally 200 nm and then slowly trended upward into the 800 nm range. A review of all collected data suggests that a higher frequency of measurement linearly is needed (i.e. every 10 m), which may allow for tolerances approaching ± 100 nm.
Table I: Average i.d., range, and standard deviation for 10 batches of nano-capillary
It is evident that through state of the art process control and metrology, providing nano-capillary tubing is possible. Finished spool length and tolerances need to be defined. The data presented in this note represents one of several studies currently under way.
Molex and Polymicro Technologies™ are trademarks or registered trademarks of Molex, LLC.
Molex
18019 N. 25th Ave., Phoenix, AZ 85023
tel. (602) 375-4100
Website: www.molex.com/capillarytubing
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
6PPD-Quinone Reference Materials
November 19th 2024Ensure environmental and consumer health with our standards for 6PPD-quinone testing. 6PPD-quinone has been detected in the environment and has shown toxicity to aquatic life. Chiron, by Zeptometrix® offers reference standards suitable for Draft EPA Method 1634.
Current and Future Advancements in PFAS Research
November 19th 2024This white paper explores the health risks, environmental impacts, and detection technologies associated with PFAS, along with the latest advancements in PFAS research. It also provides an overview of the regulatory landscape and emphasizes the crucial role of companies like ZeptoMetrix® in supplying PFAS reference materials, which are essential for ensuring the accuracy of testing. Lastly, the paper outlines key areas for future PFAS research.
Microplastics Reference Materials
November 19th 2024The World’s First Microplastics Reference Materials. Our scientists have focused on these emerging global threats, and are excited to share Chiron MicroPrefs®, the first commercial microplastic reference material. The MicroPref® portfolio is designed to detect the six most abundant plastics in the environment and is available in a novel, easy-to-use tablet formulation. Be among the first labs to join in the fight against microplastic pollution by exploring the NEW line of Chiron MicroPrefs® microplastic standards.