The quick detection of explosives is highly desirable and a new portable device has been developed for the rapid separation of anions relevant to the identification of inorganic homemade explosive devices (HMEs). This simple sequential injection-capillary electrophoresis instrument with capacitively-coupled contactless conductivity detection can detect HMEs about 20 times faster than was previously possible.
The quick detection of explosives is highly desirable and a new portable device has been developed for the rapid separation of anions relevant to the identification of inorganic homemade explosive devices (HMEs). This simple sequential injection-capillary electrophoresis instrument with capacitively-coupled contactless conductivity detection can detect HMEs about 20 times faster than was previously possible.1
Four of the most common explosive tracer ions: nitrate, perchlorate, chlorate and azide, and the most common background ions: chloride, sulphate, thiocyanate, fluoride, phosphate and carbonate were investigated. Using a separation electrolyte comprising 50 mM tris(hydoxymethylamino methane), 50 mM cyclohexyl-2-aminoethanesulphonic acid, pH 8.9 and 0.05% poly(ethyleneimine) (PEI) in a hexadimethrine bromide (HDMB)-coated capillary it was found to be possible to partially separate all 10 ions within 90 s. The combination of PEI and HDMB was necessary to achieve adequate selectivity with a sufficiently stable electroosmotic flow. This was not possible with only one polymer. Careful optimization of variables affecting the speed of separation and injection timing allowed a further reduction of separation time to 55 s, all the while maintaining adequate efficiency and resolution. Software control means that 60 samples can be produced an hour, with very high repeatability of migration times. Sensitivity is not compromised, with limits of detection ranging from 23 to 50 µgL−1 for all the explosive residues tested. As the ions move past a conductivity detector, they can be identified based on their electrical charge and the time it took them to travel through the capillary. The combination of automation, high sample throughput, high confidence of peak identification and low limits of detection makes this methodology ideal for the rapid identification of inorganic HME residues.
1. Gustavo Blanco et al., Anal. Chem., 2011, DOI: 10.1021/ac2020195
This story originally appeared in The Column. Click here to view that issue.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.