Scientists from the Karolinska Institute (Stockholm, Sweden) have taken a step closer towards the development of portable illicit drug testing using exhaled breath.1 The study published in the Journal of Breath Research details the use of liquid chromatography?mass spectrometry (LC-MS) to analyse exhaled breath of patients recovering from acute drug abuse.
Scientists from the Karolinska Institute (Stockholm, Sweden) have taken a step closer towards the development ofportable illicit drug testing using exhaled breath.1 The study published in the Journal of Breath Research details theuse of liquid chromatography–mass spectrometry (LC–MS) to analyse exhaled breath of patients recovering from acutedrug abuse. This opens up the possibilities of roadside, criminal justice, clinical, and workplace drug abuse testing.
Lead author Olof Beck told The Column that the main aim of the investigation was to build on previous studiesto obtain good detectability for a broad range of drugs. His frustration with working with saliva and the associated analytical problems led him to try and use exhaled breath. Beck said: “People always asked me why is drug testing notas easy as alcohol testing (by breath). We decided to try it and were lucky.”
Currently, urine and blood are most commonly sampled to test for the abuse of illegal drugs. This can be invasive,uncomfortable, and a long analysis process. In addition, it is sometimes impossible in some situations; for example, onthe roadside. The challenge of using exhaled breath samples lay in collecting aerosol particles selectively with sufficientsensitivity, according to Beck.
The exhaled breath samples were collected from a group of 47 patients using a specially designed commericallyavailable mask. The mask had a specific filter to trap non-volatile microparticles that carry narcotic molecules.The molecules were then analysed by LC–MS that had been optimized for maximum sensitivity. The specificcompounds that were tested for were methadone, amphetamine, methamphetamine, 6-acetylmorphine, morphine,benzoylecgonine, cocaine, diazepam, oxazepam, alprazolam, buprenorphine, and tetrahydrocannabinol. The resultswere compared with analysis of urine and plasma samples to validate the method.
Beck told The Column that in the future the research group will work towardsdeveloping MS sensitivity for the very low level of aerosols available for analysis,as well as improving detection times.
Reference
1. O. Beck et al., Journal of Breath Research, DOI: 10.1088/1752-7155/7/2/026006 (2013).
This story originally appeared in The Column. Click here to view that issue.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
PFAS Analysis in Practice: A RAFA 2024 Interview with Stefan van Leuwen
January 10th 2025At the Recent Advances in Food Analysis (RAFA) conference in 2024, LCGC International sat down with Stefan van Leuwen of Wageningen Food Safety Research to discuss his research, which addresses emerging challenges in circular food production, focusing on the risks posed by pollutants when waste and by-products are repurposed in food systems.