Scientists in Australia1 have genetically engineered the plant Arabidopsis thaliana to produce high levels of omega-3 oils that are normally found within coldwater fish like salmon.
Scientists in Australia1 have genetically engineered the plant Arabidopsis thaliana to produce high levels of omega-3 oils that are normally found within coldwater fish like salmon.
Omega-3 long chain polyunsaturated fatty acids (omega-3 LC-PUFA) are essential to human development, and are required for the development of the infant nervous system and the continued maintenance of the adult brain in later life. Docohaxaenoic acid (DHA) is one of the two key LC-PUFA’s, and is often added to infant formula as a supplement to ensure sufficent dosage of omega-3.
A. thaliana is a model organism for plant genetic modification. The researchers introduced plasmid DNA encoding seven genes for the biosynthesis of DHA, quantified the expression of the DNA with genetic analysis and measured the change in the metabolome using gas chromatography coupled to mass spectrometry (GC–MS).The seeds produced from the modified plants contained up to 15% omega-3 LC‑PUFA, which is comparable to the levels found in coldwater fish meat. The authors stated that the methodology could be transferred to oilseed crop, Brassica napus; with 1 hectare of oilseed producing 12% DHA in seed oil this would be equivalent to as much oil as found in 10,000 cold water fish.
Group leader of the study Surinder Signh commented, “Production of high levels of DHA in a seed oil has been a major goal of the metabolic engineering community. We have achieved breakthrough results of accumulation of up to 15% DHA in a land plant seed oil. This is a key step in the development of alternative sustainable sources of long chain omega-3 fatty acids.”
1. J.R. Petrie et al, PLOS ONE,7(11), 2012.
This story originally appeared in The Column. Click here to view that issue.
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.