The Application Notebook
Phthalates are added to plastics to increase flexibility. Recently, concerns have been raised over the effect of phthalate exposure from plastic materials on human health.
William Goodman, PerkinElmer Inc., Waltham, Massachusetts, USA.
Phthalates are added to plastics to increase flexibility. Recently, concerns have been raised over the effect of phthalate exposure from plastic materials on human health. This health concern has resulted in regulations regarding the type and levels of phthalates allowed in toys. Gas chromatography–mass spectrometry (GC–MS) is an excellent instrumental platform for the identification and quantification of phthalates in plastic-toy components. This paper will demonstrate a GC–MS calibration for common phthalates and the analysis of plastic-toy components for phthalate content.
Figure 1
The PerkinElmer Clarus 600 GC–MS system provided the instrumental platform for this analysis. The GC was fitted with a programmable split/splitless injector; the injector-port temperature was maintained at 280 °C. The injector-port liner was packed with glass wool to improve vaporization and provide a surface for the collection of any dissolved plastic. A PerkinElmer Elite-5ms (30 m × 0.25 mm × 0.25 μm) GC column was temperature programmed from 100 °C to 260 °C at 8 °C/min, then to 320 °C at 35 °C/min. The carrier gas, helium, was set to 1 mL/min with 25 mL/min split at the injector port. Phthalate calibration standards were prepared in methylene chloride across a range of 1 and 160 μg/mL; the calibration standards used contain 16 phthalates.
An unused toy was broken into small pieces; 1 g samples were taken from each of the 9 different types of plastics used in the toy. The samples were extracted through 15 minutes of sonication in 10 mL of methylene chloride, in a sealed vial. Following extraction, 1 mL of the sample extract was transferred into an autosampler vial for analysis; a 1 μL injection was made.
The instrument calibration across the range of 1 to 160 μg/mL for each phthalate was linear with R2 greater than 0.999 for all compounds. Applying the calibration range to a 1 g sample extracted in 10 mL of solvent relates a % weight calibration range of 0.001 to 0.16% weight phthalate in the sample.
The analysis of the toy samples resulted in detection of phthalates in each of the different plastic materials; however, the phthalate level of all analyses was well below the regulatory limits. A sample analysis is pictured in Figure 1. In the chromatogram, three peaks are evident: butylated hydroxytoluene, diisobutyl phthalate and din-butyl phthalate. Butylated hydroxytoluene is an antioxidant commonly added to polymers. The total % weight of phthalates in this component was 0.007%.
European and North American countries have set limits on the acceptable levels of phthalates in toys. As a result, a reliable technique to determine the phthalate level in toys is necessary. The GC–MS technique presented here will allow for the determination of the phthalate content in plastic-toy components.
PerkinElmer Inc.
940 Winter Street, Waltham, Massachusetts 02451 USA
tel. +1 800 762 4000 or +1 203 925 4602
fax +1 203 944 4904
Website: www.perkinelmer.com
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
6PPD-Quinone Reference Materials
November 19th 2024Ensure environmental and consumer health with our standards for 6PPD-quinone testing. 6PPD-quinone has been detected in the environment and has shown toxicity to aquatic life. Chiron, by Zeptometrix® offers reference standards suitable for Draft EPA Method 1634.
Current and Future Advancements in PFAS Research
November 19th 2024This white paper explores the health risks, environmental impacts, and detection technologies associated with PFAS, along with the latest advancements in PFAS research. It also provides an overview of the regulatory landscape and emphasizes the crucial role of companies like ZeptoMetrix® in supplying PFAS reference materials, which are essential for ensuring the accuracy of testing. Lastly, the paper outlines key areas for future PFAS research.
Microplastics Reference Materials
November 19th 2024The World’s First Microplastics Reference Materials. Our scientists have focused on these emerging global threats, and are excited to share Chiron MicroPrefs®, the first commercial microplastic reference material. The MicroPref® portfolio is designed to detect the six most abundant plastics in the environment and is available in a novel, easy-to-use tablet formulation. Be among the first labs to join in the fight against microplastic pollution by exploring the NEW line of Chiron MicroPrefs® microplastic standards.