Fingerprint analysis has been a standard method for forensic analysis and is used to identify suspects at the scene of a crime. Recent advances in next-generation DNA sequencing technology have revolutionized the criminal justice system and has downgraded the importance of fingerprint analysis. However, the positioning of DNA material can be circumstantial in some cases and this is where recent advances in analytical chemistry instrumentation can enhance the power of fingerprint analysis.
Fingerprint analysis has been a standard method for forensic analysis and is used to identify suspects at the scene of a crime. Recent advances in next‑generation DNA sequencing technology have revolutionized the criminal justice system and has downgraded the importance of fingerprint analysis. It was previously considered that DNA evidence indicated the presence of an assailant at the scene of a crime, but this is no longer the case. The positioning of DNA material can be circumstantial in some cases and this is where recent advances in analytical chemistry instrumentation can enhance the power of fingerprint analysis.
A fingerprint is defined as an invisible impression composed of ridges and grooves left by an individual on a surface. Fingerprints are often incomplete and cannot be used for the automated identification protocols used in forensic investigations.1 However, human skin secretes a unique chemical signature that is thought to be influenced by environmental factors such as diet, chemical exposure and individual genetics.
A group of researchers1 published a study which exploited the unique properties of individual fingerprints to create a more detailed profiling method. Rather than simply observing the ridged patterns associated with unique exposure of the individual’s hands to their environment, the scientists analysed the chemical signature as a new parameter for analysis. The study aimed to identify fatty acids associated with specific fingerprints using gas chromatography–mass spectrometry (GC–MS). The group found that there were differences in the chemical signature associated with fingerprints when comparing individuals of different race and gender, specifically variation in the ratio of several fatty acid and methyl esters. There was additional evidence to suggest that other compounds mirrored this variability, however, further investigation is required to confirm this hypothesis. As a greater number of individuals are sampled and additional controls are implemented, it will become clearer if this will method will become commercialized.
1. S. Michalski et al, Forensic Sci, DOI: 10.1111/1556-4029.12010 (2012).
This story originally appeared in The Column. Click here to view that issue.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.