Compounds in honey key to activation of detoxification genes in honeybees Three scientists from the University of Illinois (Illinois, USA) have detected key compounds in honey using high-performance liquid chromatography (HPLC) that can up-regulate detoxification genes.
Compounds in honey key to activation of detoxification genes in honeybeesThree scientists from the University of Illinois (Illinois, USA) have detected key compounds in honey using high-performance liquid chromatography (HPLC) that can up-regulate detoxification genes. HPLC was performed on ethyl acetate honey samples identifying four compounds that induce detoxification genes, potentially required for the detoxification of pesticides.
The western honeybee (Apis mellifera) is worth around $14 billion (US dollars) to the American agricultural economy alone; however, over the last five years there has been an approximately 30% drop in population numbers, according to the paper published in the Proceedings of the National Academy of Sciences.1
Scientists have labelled this phenomenon as “colony collapse disorder”, and it is characterized by the collapse of colonies as a result of the death of worker bees.
Leading author May Berenbaum told The Column that the interactions between multiple stress factors, including pesticides and pathogens, appear to have caused this dramatic decline in honeybee populations in the United States. She said: “One common element influencing bee responses to multiple stresses is the nutritional adequacy of the diet, yet, despite its importance to bee health and thereby to the U.S. agricultural economy, little is actually known about the nutritional needs of honeybees.”
Berenbaum first became interested in the chemical composition of honey around 15 years ago, when honey was dismissed as “little more than sugar water” by several human nutritional science publications. According to Berenbaum, honey is concentrated plant nectar packed with a diverse range of phytochemicals that are essential to larvae and adult bee function. She told The Column: “Among our first findings was that honey, depending on nectar source, can be a rich source of antioxidants even for human consumers.”
Ethyl acetate-extracted honey samples were analysed with HPLC and detected the presence of four major peaks –p-coumaric acid, pinobanksin-5-methyl ether, pinobanksin, and pinocembrin.
The compounds were used in a “bioassay” whereby honeybees were fed either a diet of plain sugar water or sugar water supplemented with each of the compounds. P-coumaric acid was found to strongly increase the expression of detoxification genes.
The findings suggest that the widespread use of honey substitutes may need to be reviewed. Such substitutes include high-fructose corn syrup that lack these key compounds, specifically p-coumaric acid. P-coumaric acid is contained within pollen that, according to the paper, has been previously shown to reduce honeybee susceptibility to pesticides and pathogens. The results suggest that the immune system of honeybees could be improved by simply supplementing dietary sources of controlled colonies with p-coumaric acid.
Future investigations will probe how the processing of nectar and pollen by bees influences the phytochemical composition of honey. Berenbaum believes that bees are potentially able to change the composition of honey by incorporating enzymes, manipulating temperatures during storage, and even controlling fermentation reactions with symbiotic microbes.
Reference
1. W. Mao, M.A. Schuler, and M.R. Berenbaum, PNAS10(22), 8842–8846 (2013).
This story originally appeared in The Column. Click here to view that issue.
LCGC’s Year in Review: Highlights in Liquid Chromatography
December 20th 2024This collection of technical articles, interviews, and news pieces delves into the latest innovations in LC methods, including advance in high performance liquid chromatography (HPLC), ultrahigh-pressure liquid chromatography (UHPLC), liquid chromatography–mass spectrometry (LC–MS), and multidimensional LC.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.