With so many HPLC columns on the market we present a simple guide to what's important when making your stationary phase and column dimension choices.
An excerpt from LCGC's e-learning tutorial on column selection for RP-HPLC at CHROMacademy.com
There are many factors that influence the performance of a high performance liquid chromatography (HPLC) stationary phase, of which the chemical nature of the bonded phase ligand is important, but by no means all encompassing. Minor manufacturing parameters such as the method of electropolishing the internal surface of the column can also have an effect on the selectivity and efficiency produced by a particular column.
Few of us have time to study each individual parameter (of which there are hundreds) and assess their interactive effects on the selectivity of our stationary phases. We need readily accessible measures of column performance to identify similar or orthogonal chemistries to those we are currently using, or to gain an insight into which column types might work for particular applications.
Several attempts have been made to produce a "definitive" set of chemical probes to best characterize the huge number of stationary phases available (well over 1000 different types are currently available). As yet a harmonized set of test probes and methodologies has not been identified, however three, independent, publicly available databases of HPLC columns exist today:
Figure 1: Schematic representations of the five interactions described by the hydrophobic subtraction model (adapted from reference 5).
The PQRI database is the best populated, with 588 columns, and is a very useful tool to aid HPLC column selection. A description of the Tanaka test probes is given below to help understand the various classifications, with the analogous PQRI test probes indicated in parentheses. It should be noted that the PQRI classification uses different chemical probes to the Tanaka (now ACD) database but the results describe a similar chemical behaviour.
Most of these groups have used chemometric approaches to produce quantitative comparisons between column characteristics based on principal component analysis (PCA) or tools to visualize the relative groupings of commercially available columns according to their key descriptors.
References available in the on-line edition: www.chromatographyonline.com/Essentials0313
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Liquid Chromatography to Analyze Vitamin D Proteins in Psoriasis Patients
January 21st 2025Can a protein involved in delivering Vitamin D to target tissues have an altered serum profile in psoriasis patients with cardiovascular disease? Researchers used liquid chromatography (LC) to help find out.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.