Research has used chromatography to provide a glimpse into the metalloprotein world, revealing the metals? extent and the promise of new insights for cell biology, microbial growth and toxicity mechanisms.
Metals in proteins provide virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability. This means metalloproteins play a key role in many biological processes including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). However, predicting what metals will be present in an organism from the genome is currently impossible because metal coordination sites are diverse and poorly recognized. Research published in the journal Nature1 has used chromatography to provide a glimpse into the metalloproteins world, revealing the metals’ extent and the promise of new insights for cell biology, microbial growth and toxicity mechanisms.
According to the team the new approach shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry and inductively coupled plasma mass spectrometry. They catalogued the metals in three microbes: one that lives in human intestines, one from a hotspring in Yellowstone National Park and one that thrives in the near boiling waters of undersea thermal vents. The research uncovered a microbial world far richer in metals than ever expected. “We thought we knew most of the metalloproteins out there,” says John Tainer of Berkeley Lab’s Life Sciences Division and the Scripps Research Institute in La Jolla, California, USA. “But it turns out we only know a tiny fraction of them. We now have to look at microbial genomes with a fresh eye.”
1. A. Cvetkovic et al., Nature, 466, 779-782 (2010).
This story originally appeared in The Column. Click here to view that issue.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.