In this study, comprehensive 2D gas chromatography-mass spectrometry with electron impact and chemical ionization was used to characterize silylated fatty alcohol alkoxylates.
Fatty acid alkoxylates used as non-ionic surfactants in home and industrial cleaning are synthesized by a reaction of fatty alcohols with alkoxides. Analysing these copolymers is, however, a challenging task. They can be characterized by their degree of alkoxylation, the arrangement of building blocks, the type of starter used and the endcapping. Difficulties arise from the fact that they are often present in complex matrices, from the high polydispersity and from the presence of a large number of constitutional isomers depending on the degree of alkoxylation.
In this study, comprehensive 2D gas chromatography–mass spectrometry [GC×GC(qMS)] with electron impact and chemical ionization was used to characterize silylated fatty alcohol alkoxylates in the low-molecular weight range up to 700 Da. The method applied successfully characterizes alkoxylates even in a complex matrix (such as detergents) by combining the results of electron impact and chemical ionization measurements.
RAFA 2024: Giorgia Purcaro on Multidimensional GC for Mineral Oil Hydrocarbon Analysis
November 27th 2024Giorgia Purcaro from the University of Liège was interviewed at RAFA 2024 by LCGC International on the benefits of modern multidimensional GC methods to analyze mineral oil aromatic hydrocarbons (MOAH) and mineral oil saturated hydrocarbons (MOSH).
RAFA 2024 Highlights: Contemporary Food Contamination Analysis Using Chromatography
November 18th 2024A series of lectures focusing on emerging analytical techniques used to analyse food contamination took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, Czech Republic. The session included new approaches for analysing per- and polyfluoroalkyl substances (PFAS), polychlorinated alkanes (PCAS), Mineral Oil Hydrocarbons (MOH), and short- and medium-chain chlorinated paraffins (SCCPs and MCCPs).
Pharmaceutical excipients, such as polyethylene glycol-based polymers, must be tested for the presence of ethylene oxide (EtO) and 1,4-dioxane as part of a safety assessment, according to USP Chapter <228>.