Researchers from “The Peppermint Initiative” have published their first results using gas chromatography–ion mobility spectrometry (GC–IMS) supporting its use in breath analysis and beginning the process of standardization of breath analysis methods (1).
The study of volatile organic compounds (VOCs) in exhaled breath has been on‑going since in the 1970s, with many exhaled compounds being proposed as potential biomarkers. However, the variation in reported values is large—sometimes as high as a factor of 1000. While variability between individuals can account for some of this variation, sampling and analysis methods must also contribute heavily, adding further weight to the argument that standardization is crucial for further development and translation of breath research into clinical and deeper-research applications.
To address this issue, the International Association for Breath Research has developed the Peppermint Initiative, an international multi-centre benchmarking study seeking to provide a set of comparative data establishing a peppermint background before using a standardized dose of peppermint-oil and scheduled breath sample collections for six hours onwards. The most recent work published uses GC–IMS and the established protocols to provide benchmark values for the peppermint experiment.
The study reported five “peppermint experiments” with GC–IMS to provide benchmark peppermint washout data for this technique and support its future use in breath‑testing, analysis, and research. A total of 148 samples were analyzed, with 35 ancillary tests used to evaluate the results. Twelve IMS responsive compounds were identified with eucalyptol, β-pinene, α-pinene, and limonene being the most abundant. Of those, eucalyptol proved to be the most intense exhaled peppermint-oil component, and as such, it was selected as a peppermint marker for benchmarking GC–IMS. The responses obtained by all centres provided traceable exponential washout profiles within detectable concentration levels and within a given timescale.
Interestingly, 80% of participants showed consensus in regards to the maximum exhaled concentration of eucalyptol; however, the remaining 20% showed either delayed or complex elimination profiles. This suggests some unknown factors, such as food intake and/or the effect of age, sex, race/ethnicity, or body mass, could be influencing results. The team have committed to a future study to investigate the implications of such phenotypic variability.
Overall, the benchmarking study showed how a peppermint experiment may be used with GC–IMS in different operational settings. Further studies are required to verify these preliminary benchmarks and investigate the previously mentioned phenotypic variations.
For a detailed description of the peppermint experiment, please read the introductory paper Henderson et al. (2).
References
Measuring Procyanidin Concentration in Wines Using UHPLC
January 24th 2025Researchers from the University of Bordeaux (Villenave d'Ornon, France) report the development and validation of a rapid and quantitative analytical method measuring crown procyanidin concentration in red and white wines using ultra-high performance liquid chromatography (UHPLC) coupled with a ultra-high performance liquid chromatography (Q-TOF) mass spectrometer.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.